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Abstract

Links between climatic conditions in the eastern equatorial Pacific and extratropical

ecological processes remain unexplored. The analysis of a 20-year time series of spatial

and numeric dynamics of a threatened Mediterranean bird suggests, however, that such

couplings can be remarkably complex. By providing a new ecological time-series

modelling approach, we were able to dissect the joint effects of the El Niño/Southern

Oscillation (ENSO), the North Atlantic Oscillation (NAO), regional weather, population

density and stochastic variability on the expansion dynamics of the White-headed duck

(Oxyura leococephala) in Spain. Our results suggest that the spatial and numeric dynamics

of ducks between peak brood emergence and wintering were simultaneously affected by

different climatic phenomena during different phases of their global cycles, involving

time lags in the numeric dynamics. Strikingly, our results point to both the NAO and the

ENSO as potentially major factors simultaneously forcing ecological processes in the

Northern Hemisphere, and suggest a new pathway for non-additive effects of climate in

ecology.
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I N T R O D U C T I O N

Exploring the interface of climate and ecological systems is

a central challenge of current environmental research

(Sæther et al. 2000; Stenseth et al. 2002). The use of proxy

indexes of large-scale climatic phenomena, which reduce the

complex spatio-temporal variability of weather fluctuations

in a single measure, is prompting a growing body of

empirical studies on the ecological effects of climate

(Stenseth et al. 2002, 2003). For instance, the North Atlantic

Oscillation (NAO) and the El Niño/Southern Oscillation

(ENSO) are currently recognized as main planetary sources

of interannual climatic variability (Hurrell 1995; Allan et al.

1996; Trenberth et al. 1998; Visbeck et al. 2001; Stenseth

et al. 2003) and they are also being increasingly acknow-

ledged as a major source of population variability (Bjørnstad

& Grenfell 2001; Ottersen et al. 2001; Stenseth et al. 2002),

which is broadening the everlasting debate of extrinsic vs.

intrinsic factors in population regulation (Bjørnstad &

Grenfell 2001). Indeed, by using climate indexes, a rich

array of complex climatic effects on population dynamics

can be documented, including, for instance, interactive

(non-additive) effects (Sæther et al. 2000; Coulson et al. 2001;

Chávez et al. 2003), regime shifts (Rodó et al. 2003; Durant

et al. 2004) and time lags (Thompson & Ollason 2001;

Almaraz & Amat 2004).

Although individuals experience climatic conditions at

local and regional scales, these conditions can be highly

heterogeneous in space and time (Plisnier et al. 2000;

Stenseth et al. 2002). Additionally, fluctuations of local

weather are usually teleconnected with climatic oscillators

operating at very large spatial scales (Hurrell 1995; Allan

et al. 1996; Ottersen et al. 2001; Stenseth et al. 2003), with

centres of action sometimes located at the opposite

hemisphere (e.g. Hurrell 1995; Rodó et al. 1997; Moron &

Ward 1998; van Oldenborgh et al. 2000). However, most

studies linking ecological processes to the NAO and the

ENSO have been conducted in geographical regions close
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to their centres of action (e.g. Polis et al. 1997; Sæther et al.

2000; Sillet et al. 2000; Holmgren et al. 2001; Aanes et al.

2002; Lima et al. 2002; Lekve et al. 2003; Durant et al. 2004),

so the ecological responses outside these areas are poorly

known, for instance, at the population dynamics level

(Ramos et al. 2002; Ogutu & Owen-Smith 2003). Moreover,

the understanding of the mechanistic basis underlying a

given ecological response to climate is incomplete without a

full characterization of the relationship between large-scale

climate and local weather (Stenseth et al. 2003), but this

�climatic downscaling� is usually neglected in ecological

studies. For instance, Ramos et al. (2002) recently found

concurrent correlations between the breeding successes of a

seabird in the Indian Ocean and both local weather and

ENSO indexes; however, their analyses and interpretations

were confounded by the teleconnection of both local and

large-scale climate.

Here we report for the first time on the simultaneous

effects of northern (NAO) and southern (ENSO) hemi-

spheric fluctuations in climate on the spatio-temporal

dynamics of a natural population throughout most of its

world distribution range. We first propose a substantive

hypothesis accounting for non-additive effects of climatic

fluctuations on the seasonal spatial and numeric expansion

of the globally threatened Oxyura leucocephala (the white-

headed duck) in the south-western Palaearctic during a

20-year period, and then translate it into a combination of

a measurement model and a structural model (Bollen

1989). Recent evidence (Almaraz & Amat 2004) suggests

that seasonality is a key process in the spatio-temporal

dynamics of O. leucocephala in southern Europe; however,

although at any one time a positive abundance–area

relationship can be found throughout the distribution

range of ducks, spatial and numeric recruitment processes

taking place between breeding and wintering are largely

uncoupled. Therefore, by using a novel approach to

implement the neglected climatic downscaling in a single

model, our main goal in this paper will be to explore if

different large-scale climatic phenomena may be simulta-

neously forcing spatial and numeric dynamic processes in

this species, a question with central implications beyond

ecological theory. For example, although the ENSO effects

on Palaearctic climate are currently uncertain (IPCC 2001),

severe climatic and ecological impacts are forecasted for

this region under climate warming scenarios (IPCC 2001;

Mooney et al. 2001; Christensen & Christensen 2003).

Thus, given the current positive phases of both the NAO

and the ENSO correlated with global warming (Allan et al.

1996; IPCC 2001; Visbeck et al. 2001), untangling the links

between large-scale climate and ecological processes in the

western Palaearctic can yield valuable insights into the

behaviour of natural ecosystems under climate change

scenarios (Mooney et al. 2001).

M A T E R I A L A N D M E T H O D S

Location and population data

Oxyura leucocephala is a small diving, strongly territorial duck

with highly fragmented populations in north-eastern Africa,

southern Spain and Central Asia (Green & Hughes 2001).

World population was estimated at 14 000–20 000 in the

year 2000 (Green & Hughes 2001); nearly the 30% of the

world population of the species (4500 birds) gathered in

Spain in this year (Green & Hughes 2001; Almaraz & Amat

2004). Population dynamics data used in this study consist

of direct counts gathered simultaneously throughout the

study area (124 habitat patches in south-western Spain),

during January (wintering) and June (peak brood emergence

during the breeding season) (see Almaraz & Amat 2004 for

further details on sampling methodology).

As the population expanded in an exponential fashion

during the study period (Almaraz & Amat 2004) the

difference in loge-range size in wintering (Sw) and loge-range

size during breeding (Sb) is an estimate of seasonal range

dynamics (DSb ¼ Sw ) Sb); on the other hand, numeric

recruitment of broods during the breeding season (DNb) was

calculated as the difference in loge-population size in

wintering (Nw) and loge-population size during breeding

(Nb). Thus, we will work with full seasonal models (Almaraz

& Amat 2004). Brood recruitment is positively correlated to

overwintering survival (r ¼ 0.601, n ¼ 20, P ¼ 0.004), so

recruitment is also an estimate of interannual numeric

expansion. A regional estimate of population density (Dt,

birds per km2) was used in the analyses as a weighted index of

spatial crowding of birds (see Almaraz & Amat 2004 for

details). We have used this measure because the study area

conforms to a highly dynamic patchy population rather than to

a network of local, partially isolated populations connected

by migration (Almaraz & Amat 2004; see Harrison 1994).

Climatic data

As regional-scale climatic descriptors, we used records on

summer (July to August) and winter (November to Decem-

ber) precipitation from the year 1979 to 2000 throughout the

distribution range of the species in the study area (see

Almaraz & Amat 2004). Large-scale climatic data comprise

the multivariate ENSO index (MEI: http://www.cdc.noaa.

gov/�kew/MEI/mei.html; Wolter & Timlin 1993) and the

NAO index (http://www.cgd.ucar.edu/�jhurrell/nao.html,

Hurrell 1995). The MEI index has been suggested by Wolter

& Timlin (1993) as a better descriptor for exploring ENSO

teleconnections with extratropical regions. Precipitation

values were regressed against NAO and ME monthly index

values with lags up to 12 months using a distributed-lags

analysis; according to this analysis, summer (June to August)

and winter (November to January) values for both proxy

548 P. Almaraz and J. A. Amat

�2004 Blackwell Publishing Ltd/CNRS



indexes yielded the largest partial regression coefficients for

the summer and winter precipitation subsets, respectively, so

those values were used in the analysis (see Fig. 1a).

S T R U C T U R A L E Q U A T I O N M O D E L L I N G O F T H E

P O P U L A T I O N D Y N A M I C A L E F F E C T S O F C L I M A T E

The substantive ecological hypotheses

We assessed the structural and causal effects of large-scale

climate, regional weather, population density and stochas-

ticity on numeric recruitment and spatial dynamics of ducks

using structural equations with latent constructs modelling

(hereafter SEM; Bollen 1989; see Myers & Cadigan 1993 for

a related ecological approach). As spatial and numeric

recruitment processes were temporally and spatially un-

coupled (Almaraz & Amat 2004), separate models will be

constructed for both patterns. In our hypothetical models,

we will assume brood recruitment (DNb) and spatial

dynamics (DSb) to be affected by both rainfall (Wt)i, where

i stands for a time lag) and loge-population density [Xt)i ¼
loge(Dt)i), see above], the later being affected as well by

rainfall; that is, here we test the plausible hypothesis that

rainfall can modulate population density (the number of

birds per km2 of wetland) by determining the number of

available habitat patches (see Newton 1998 for examples

with other waterfowl species), hence affecting brood

recruitment in a non-additive way (sensu Stenseth et al.

2002). Additionally, if population density affects spatial

dynamics, this would suggest that territoriality may exert a

positive effect on spatial expansion, a common process in

territorial birds (see Newton 1998). Rainfall is in turn

affected by both the NAO (Ut)i) and the ENSO (Zt)i),

which we consider to be teleconnected in our model.

Finally, we can assume that population density is the output

of an imperfect measurement process, with potential

implications on parameter estimation (Bollen 1989). There-

fore, we will model real population density as a latent

(unobserved) variable in our SEM, and consider measured

population density just as an indicator of the unobserved

dynamic process (see Bollen 1989 for further details). That

is, we superimposed a measurement model, incorporating

information on the observation errors of the measurement

process, upon the structural model described by the

substantive hypothesis. For reasons of space, in Appen-

dix S1 (see Supplementary Material) we describe the

construction of the full SEM from the assumptions made

by a simulated measurement process. Figure 2 shows a path

diagram depicting the topological relationships between the

ecological and climatic variables, as assumed by the

substantive hypotheses.

The mathematical model

Putting the substantive hypotheses in mathematical form is

straightforward; under standard assumptions (see below),

we can write the general hypotheses as:

DNb ¼ c þ g1Xt�i þ g2Wt�i þ et ð1:1Þ

DSb ¼ c þ g1Xt�i þ g2Wt�i þ et ð1:2Þ

Xt�i ¼ s þ g3Wt�i þ et ð2Þ

Wt�i ¼ l þ n1Ut�i þ n2Zt�i þ et ð3Þ

Figure 1 Climatic data used in the analysis. (a) Response surface

depicting the joint effects of the multivariate ENSO index and the

NAO index on standardized regional rainfall variability, during the

boreal summers of the period 1980–2000 (see text); only for

illustrative purposes, the surface was fitted using a bicubic spline

smoothing algorithm. (b) 20 years running Pearson’s correlation

coefficient (sliding windows; see, e.g. Rodó et al. 2003) between the

NAO and the ENSO during the boreal summer, winter and spring

seasons from 1950 to 2000. Horizontal dotted lines in the graph

indicate statistical significance of individual correlations at a

nominal 0.05 level.
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n3 ¼ CovðUt�i ;Zt�iÞ ð4Þ

xt ¼ Xt ½dn��1 þ dx;t ð5Þ

Each of the variables et is a set of independent and

identically distributed (IID) random variables following a

normal distribution, (see Fig. 2). Parameters in eqns 1–4

denote, respectively, the strength of density dependence

(g1); the magnitude of the abiotic effect on brood

recruitment (g2); the strength of the rainfall effect on

population density (g3); the NAO (n1) and ENSO (n2)

effects on rainfall and the strength of the teleconnection

of both hemispheric fluctuations (n3). Additionally,

parameters c, s, l are intercepts, and need not be

estimated (Bollen 1989). Equation 5, which represent the

connection between the measurement model and the

structural model is described in detail in Appendix S1. In

summary, as there are five measured variables in the

above model, up to this point we have constructed two

population variance–covariance matrix (R; Bollen 1989),

one for numeric recruitment and the other for spatial

dynamics. For instance, the matrix for the numeric

recruitment component would thus be

The statistical hypothesis

In order to estimate the biological parameters in eqns 1–5,

a set of distributional assumptions regarding the model

must be made (Bollen 1989; Myers & Cadigan 1993):

(i) both log-transformed population density (Xt)i), and

rainfall (Wt)i) were assumed to be drawn from time-

invariant, normal distributions with means li and constant

variances ui; that is, Xt � N(l1, u1) and Wt � N(l2, u2);

(ii) the interannual stochastic variability impacting on each

endogenous variable (et) is assumed to describe a white

noise process with 0 mean and constant variance wi; that is,

et � N(0, w1–3) (iii) dx,t � N(0, hx), where hx is the

estimation error variance of population density (see Appen-

dix S1); and (iv) NAO and ENSO proxy indexes were

drawn from time-invariant, normal distributions with mean

mi and constant variance fi; that is, Ut)1 � N(m1, f1),

Zt)1 � N(m2, f2). Collecting variances and covariances

across terms, the population matrix R can now be rewritten as

Figure 2 depicts the topological position of each cova-

riance written in matrix 7.

At this step we used the data to test the hypothesis

R ¼ RðhÞ ð8Þ
where h is the vector containing the model parameters, and

R(h) is the covariance matrix written as a function of the

elements in h (Bollen 1989). The theoretical population

matrix can be derived using linear covariance algebra and

conditional probability theory. Sampling parameter esti-

mates (i.e., sampling estimators of the population parame-

ters in h) were obtained by minimizing the discrepancy

between the sampling variance–covariance matrix (S) and

the expected (population) matrix given the causal structure

and the data, using a generalized least squares (GLS) loss

function (Bollen 1989; see Almaraz & Amat 2004). Monte

Carlo simulation suggests that the statistical power of GLS

covariance structures is greater than maximum-likelihood

models in noisy data sets derived from short time series (P.

Almaraz, unpublished data). Overall, from the parameter

R ¼

VarðDNbÞ CovðDNb;XtÞ CovðDNb;Wt�iÞ CovðDNb;Ut�iÞ CovðDNb;Zt�iÞ
VarðXtÞ CovðX t ;W t�iÞ CovðX t ;U t�iÞ CovðX t ;Z t�iÞ

VarðW t�iÞ CovðW t�1;Ut�iÞ CovðW t�1;Z t�iÞ
VarðU t�iÞ CovðU t�1;Z t�iÞ

VarðZ t�iÞ

2
66664

3
77775
: ð6Þ

R ¼

ðg2
1 þ g2

2Þu1 þ w1 þ hx g1u1 g2u2 0 0

ðg2
3Þu1 þ w2 þ hx g3u1 0 0

ðn2
1 þ n2

2Þu2 þ w3 ðu3 þ w3Þn1 ðu3 þ w3Þn2

11 n3

12

2
66664

3
77775
: ð7Þ
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values satisfying the condition imposed by eqn 8 we derived

the goodness-of-fit of S to R, which is the central hypo-

thesis of the present paper; specifically, statistical theory

predicts that if S follows a Wishart distribution (a less

restrictive statistical assumption than the multivariate nor-

mal) and the model is identified (the number of free

parameters to be estimated from the model is smaller than

the total variances and covariances of the variance–covari-

ance matrix), the difference between S and R will asymp-

totically follow a chi-square distribution (Bollen 1989).

Although our models are over-identified (see matrix 7 and

Fig. 2), the exact sampling distribution of the goodness-of-

fit statistic is seldom known (Bollen 1989). Therefore,

uncertainty of point parameter and goodness-of-fit esti-

mates of each variance–covariance structure was assessed

with the bias-corrected bootstrap method (Efron &

Tibshirani 1993). Because bootstrapped estimates do not

assume any particular sampling distribution, this allowed us to

relax the strong distributional assumptions made in matrix 7.

One thousand bootstrapped covariance structures were

used, and a range of 90% around the point estimate was

considered given the severity of this method when working

with small and biased samples (Efron & Tibshirani 1993).

The dimension of the model derived from matrix 7 can

be reduced by considering the effects of large-scale climate

as negligible, that is, by setting free parameters n1 or n2 to 0;

additionally, by setting parameter g3 to 0, models with just

additive climatic effects can be tested against models with

both additive and non-additive effects. Overall, six structural

models (one saturated plus five nested; Bollen 1989) were

estimated and tested for each component of the dynamics.

In order to optimize the trade-off between the bias

introduced in model estimation when relevant parameters

are omitted and the overall variance inflation caused by an

overparameterized model, information-theoretic [Akaike

information criterion (AIC)] and approximate fit indexes

[Brown-Cudeck cross-validation index (CVI)] were calcula-

ted for each of the covariance structures (Bollen 1989).

Small AIC and CVI values suggest a high parsimony and a

good fit of the model, respectively. Programming and

analyses were conducted in the SEPATH module of

STATISTICA 6.1 (StatSoft, Inc. 2003).

R E S U L T S

Testing the general substantive hypothesis

Results of the goodness-of-fit tests performed with the

spatial and numeric SEMs are given in Table 1. Interest-

ingly, P-values are large for nearly all of them, suggesting

that the empirical covariance structures tested conforms to

highly plausible hypotheses given the available data;

moreover, the bootstrap estimated uncertainty of the chi-

squared statistics yield very high confidence in the robust-

ness of the results against violations of the distributional

assumptions (the so-called Wishart distribution). The joint

interpretation of the parsimony and approximate fit indexes,

and the tests for multivariate normality suggest that the

saturated model for numeric recruitment (DNb[n1)3 +

g1)3]) and the nested model with just NAO forcing and

additive climatic effect for spatial dynamics (DSb[n1 +

g1 + g2]) are the best candidates given our initial hypothe-

ses. Note, however, that the model DNb[n1 + g1)3] is a

slightly better model relative to the saturated one according

to the above indices; nevertheless, the significant covariance

between the NAO and the ENSO during the study period

(see below) suggested that the saturated model should be

selected instead. Additionally, the differences in AIC and

ENSO Zi NAO Ui 

(j3 + y3)x2 (j3 + y3)x1

x3

Real density Xi 

Measured density Xi 

Growth rate
DNb/Sb

Rainfall Wi 

Measurement
process,

dxt~ N(0, qx)

h3j1 h2j2

h1j1

N(0, y3)

N(0, y2)

N(0, y1)

Figure 2 Diagram of the full structural equation model depicting

the large-scale climatic effects on O. leucocephala spatio-temporal

dynamics through regional weather variability. The modelled spatial

downscaling follows logically from the upper part of the graph to

the lower part. Each box in the graph depicts a variable (modelled

indicator if solid, unobserved latent if dotted) and each arrow

depicts a causal relationship (if single-headed) or a simultaneous

covariance (if double-headed) between the set of indicators (if

solid) and constructs (if dotted). The ovals stand for the structural

perturbation term of each endogenous variable. See the main text

and Appendix S1 in the Supplementary Material for parameters

and further descriptions.
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CVI among the models tested were negligible, so non-

additive climatic effects on spatial dynamics through

population density cannot be excluded (compare DSb[n1 +

g1 + g2] against DSb[n1)3 + g1)3] in Table 1).

Testing individual covariances within the central
hypothesis

Table 2 shows the univariate standardize partial regression

coefficients derived from the covariances in matrix 7 for the

best structural models selected above; however, we show

parameter values for the model DSb[n1 + g1)3] instead of

the �best� model in order to compare the behaviour of the

SEM when simulated estimation error variance is taken into

account (see Appendix S1). Results suggest differential roles

for climatic variability and population density during

numeric recruitment and range dynamics. In this sense,

population density had a larger effect on numeric recruit-

ment (g1 ¼ )0.433) than did climatic variability (g2 ¼
0.386), the opposite applying for range dynamics. Bootstrap

estimated uncertainty of point parameter values were

generally larger than normality-based values across all

models (Table 2), with notable discrepancies in some cases;

additionally, both the magnitude of density dependence and

the strength of the climatic effect on population density

slightly decreased when simulated estimation error variance

Table 2 Parameter estimates for models

DNb[n1)3 + g1)3] and DSb[n1 + g1)3] in

Table 1

Model, parameters and paths Estimate 90% NT CI 90% BCCI

DNb[n1)3 + g1)3]

g1 (Density fi recruitment) )0.433 ()0.746, )0.119) ()0.717, 0.015)

g2 (Rain fi recruitment) 0.386 (0.061, 0.712) ()0.250, 0.811)

g3 (Rain fi density) )0.434 ()0.761, )0.107) ()0.665, 0.273)

n1 (NAO fi rain) )0.155 ()0.451, 0.141) ()0.590, 0.240)

n2 (ENSO fi rain) 0.667 (0.407, 0.926) (0.244, 0.851)

n3 (ENSO«NAO) )0.462 ()0.774, )0.150) ()0.693, 0.085)

DSb[n1 + g1)3]

g1 (Density fi expansion) 0.357 (0.036, 0.678) ()0.450, 0.716)

g2 (Rain fi expansion) 0.370 (0.055, 0.685) ()0.061, 0.569)

g3 (Rain fi density) )0.127 ()0.507, 0.254) ()0.431, 0.295)

n1 (NAO fi rain) )0.592 ()0.843, )0.341) ()0.661, )0.215)

Path arrows within each model denote hypothesized teleconnections («) and directed

explicit exogenous sources of variability (fi). Shown are point estimates of parameters, along

with their 90% confidence intervals estimated according to the normal theory (NT CI) and

from a set of 1000 bootstrapped samples using the bias-corrected method (BCCI).

Table 1 Results of the goodness-of-fit tests for the structural models constructed

Model vd.f.
2 90% BCCI P-value AIC CVI M-B Kappa

DNb[n1)3 + g1)3] 3.0494 (0.178, 5.283) 0.550 1.318 1.729 )0.054

DNb[n1 + g1)3] 0.1482 (0.001, 2.104) 0.929 0.850 1.170 0.018

DNb[n2 + g1)3] 3.0142 (1.072, 6.686) 0.222 1.001 1.151 )0.044

DNb[n1)3+ g1 + g2] 5.1375 (0.406, 6.739) 0.399 1.323 1.809 )0.054

DNb[n1+ g1+ g2] 2.8193 (0.117, 4.524) 0.420 0.885 1.148 0.018

DNb[n2+ g1+ g2] 5.1023 (1.119, 7.352) 0.164 1.005 1.269 )0.044

DSb[n1)3 + g1)3] 0.6714 (0.015, 2.867) 0.955 1.193 1.728 )0.150

DSb[n1 + g1)3] 0.5172 (0.006, 2.677) 0.772 0.869 1.170 )0.075

DSb[n2 + g1)3] 0.1522 (0.001, 1.720) 0.927 0.850 1.151 )0.203

DSb[n1)3+ g1 + g2] 0.9355 (0.194, 5.314) 0.968 1.102 1.588 )0.150

DSb[n1 + g1+ g2] 0.7843 (0.015, 1.950) 0.853 0.778 1.041 )0.075

DSb[n2 + g1+ g2] 0.4363 (0.003, 1.519) 0.933 0.760 1.023 )0.203

Each model is denoted by the dynamic component modelled (numeric, DNb, or spatial, DSb) and the parameters specifically affecting it,

represented within square brackets (see main text for descriptions). The point estimate of the chi-squared statistic, the 90% bias-corrected

bootstrap confidence interval of the estimate (BCCI), and the associated P-value of the goodness-of-fit test are shown. In addition, the Akaike

Information Criterion (AIC), the Browne-Cudeck Cross-Validation Index (CVI), and the Mardia-based (M-B) Kappa, which test for the

sphericity of the covariance matrix are also given. M-B Kappa values close to 0 suggest that the covariance matrix do not depart significantly

from a multivariate normal matrix (Bollen 1989). The best model for each dynamic component is given in bold.
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was taken into account, although the overall effects of

sampling variability on the goodness-of-fit was negligible

(see Appendix S1). Keeping this in mind, the best model for

numeric recruitment yielded robust coefficients for both the

boreal summer NAO–ENSO teleconnection and the

ENSO link with rainfall variability (Table 2). Notably, when

included together with the ENSO in the saturated model,

the NAO effect on regional weather seems to be cancelled

out. A weak coefficient is also found for the 1-year lagged

rainfall effect on population density. On the other hand, the

best model for the spatial dynamics subset exclude both the

ENSO forcing and non-additive climate effects, while

suggesting that the wintering phase of the NAO exerts an

indirect negative effect on range dynamics through regional

meteorological conditions (Table 2).

Comparison of SEM to standard ecological time-series
modelling approaches

In order to compare the SEM method to traditional

ecological time-series modelling approaches, we constructed

two autoregressive-type models with environmental covari-

ates (e.g. Aanes et al. 2002; Lima et al. 2002; Lekve et al. 2003)

using the same variables depicted in Fig. 2 (i.e. we deleted any

topological complexity from the model without reducing

its dimensionality). In brief, the models would have the form

DNb ¼ a þ bXt þ cWt�i þ dUt�i þ eZt�i þ ret ð9:1Þ

DSb ¼ a þ bXt þ cWt�i þ dUt�i þ eZt�i þ ret ð9:2Þ

Table 3 summarizes the results from the fitting of such

models using a general linear model (GLM). The overall

fitting of the GLM to the numeric subset was good (R2 ¼
0.44; likelihood-ratio test: v2

4 ¼ 16.25, P ¼ 0.003), but point

parameter estimates included large uncertainties except for

density (P ¼ 0.032) and rainfall (P ¼ 0.067). On the other

hand, the fitting of the GLM to the spatial subset was poor

(R2 ¼ 0.05, v2
4 ¼ 5.75, P ¼ 0.219), with non-significant

parameter estimates (P > 0.10 in all cases; Table 3).

Therefore, in contrast to standard approaches, SEM results

suggest a rather complex web of �cascading effects� of

climate in the dynamics of O. leucocephala, including non-

additive effects for the numeric dynamics; moreover, these

effects seem to differ markedly between the spatial and

numeric components of the dynamics, with a complex

causal structure in the numeric recruitment subset (fully

captured by the saturated model shown in Fig. 2) and a

rather less complex structure in the spatial subset.

D I S C U S S I O N

The effects of recent climate change are usually exerted

through changes in precipitation and temperature patterns

(Mooney et al. 2001; Stenseth et al. 2002; Root et al. 2003).

Precipitations in the south-western Palaearctic decreased at

a rate of 20% per decade during the last 30 years (Mooney

et al. 2001), which is among the largest rates observed

throughout the planet (IPCC 2001). Although some

ecological responses to climate warming have been recently

identified across this area, they are concerned with either

phenological shifts (Peñuelas et al. 2002) or changes in

breeding parameters (Sanz et al. 2003) correlated with linear

trends in temperature. Hence, to our knowledge this is the

first time that the two major planetary sources of

interannual climatic variability are consistently linked to an

ecological process in this region. Moreover, our study is the

first to include explicitly and simultaneously connections

between regional weather conditions and hemispheric

climatic fluctuations in a single model describing the

dynamics of a natural population. As shown, these complex

relationships would not have been uncovered with tradi-

tional modelling techniques, so the structural approach

adopted in this study provides our results with strong

inferential power (Bollen 1989).

Interestingly enough, our previous findings (Almaraz &

Amat 2004) suggested that the spatial and numeric dynamic

abundance patterns were temporally uncoupled, so different

mechanisms should be involved in the processes generating

the patterns observed. The present paper is revealing in this

sense; for instance, increased rainfall during low NAO

winters prompted the spatial expansion of the population

from breeding to wintering, probably by increasing the

number of available wetlands after the dry Mediterranean

Table 3 Summary of the general linear modelling (GLM) of the

extrinsic (ENSO, NAO and regional rainfall) and intrinsic

(population density) effects on the numeric and spatial dynamics

of O. leucocephala in Spain, 1980–2000

Predictor Estimate SE t-test P-value

Numeric recruitment (DNb)

ENSO )0.351 0.247 )1.421 0.176

NAO )0.031 0.199 )0.156 0.877

Rainfall 0.534 0.270 1.980 0.067

Population density )0.463 0.196 )2.363 0.032

Spatial dynamics (DSb)

ENSO 0.062 0.224 0.277 0.786

NAO 0.061 0.278 0.220 0.828

Rainfall 0.406 0.275 1.476 0.161

Population density 0.373 0.229 1.633 0.123

The GLM (normal error structure and identity link function) was

derived from a standard autoregressive model with environmental

effects included, besides population density (see text). Shown are

point parameter estimates and associated standard errors (SE), and

the value of the Student’s t-test for each estimate.
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summer; on the other hand, as proposed in our substantive

hypothesis, the 1-year lagged rainfall signal on population

density during numeric recruitment suggest that a low

ENSO index during austral winters cause a range contrac-

tion through a reduction in western Mediterranean summer

rainfall: because range size correlates strongly with range

surface and with population size, an increase in population

density is thus expected after dry years. For example, the

strong El Niño events of 1982–83, 1986–87 and 1997–98

(Trenberth et al. 1998; IPCC 2001) were linked to high

summer rainfall values in the study area during the same

years, and with extremely low breeding densities the year

after; accordingly, large recruitment episodes coupled with

these low densities were evident in the population (Fig. 3).

Therefore, here we have provided empirical evidence that

regional meteorological conditions correlated with hemi-

spheric fluctuations in climate are independently affecting

the spatial and numeric dynamics of ducks in a non-additive

way (Stenseth et al. 2002) by indirectly modulating the

strength of density dependence impacting on the popula-

tion. Previous evidence also suggested non-additive effects

of climate in a Dipper Cinclus cinclus population in Norway

(Sæther et al. 2000) and in the Soay Sheep population of

Hirta Island, off Scotland (Coulson et al. 2001). However,

while these studies model interactive effects of climate as a

direct impact on the density-dependent parameter (see

Stenseth et al. 2002), here we have shown that climate

directly modulates population density in O. leucocephala,

which is indeed a function of habitat availability (see also

Newton 1998); population density, when measured on a

spatially implicit basis, would thus be an environment-

dependent state variable. Hence, our study suggests a novel

pathway for non-additive effects of climate, which may be

important in species with patchy populations inhabiting

temporary wetlands (see e.g. Harrison 1994).

Given ongoing global climate change (IPCC 2001), a

great deal of research is being devoted to the exploration of

climatic interactions between tropical and extratropical

regions (e.g. Rodó et al. 1997; Moron & Ward 1998;

Trenberth et al. 1998; van Oldenborgh et al. 2000; Hoerling

et al. 2001; Rodó 2001; Mélice & Servain 2003; Rodó 2003).

Signals of the ENSO on extratropical rainfall variability have

been found, for instance, on the Iberian Peninsula (Rodó

et al. 1997), Central Europe (van Oldenborgh et al. 2000),

and the Middle East (Yakir et al. 1996). Nevertheless, the

amount of global rainfall variability correlated with the

ENSO is uncertain (Allan et al. 1996; Dai et al. 1997) and no

clear consensus exists among authors (IPCC 2001). This

uncertainty complicates the exploration of possible inter-

hemispheric teleconnections between ocean/atmosphere

couplings taking place in the eastern equatorial Pacific and

ecological processes of the Northern Hemisphere (Rodó

2003). In this sense, the Mediterranean basin is forecasted

by several global circulation models (GCMs) as one of the

most affected by future climate change under scenarios of

doubled concentrations of greenhouse gases (IPCC 2001),

with a 5–15% of reduction in rainfall relative to current

levels by the year 2100 (IPCC 2001; Mooney et al. 2001). In

addition, high resolution GCMs predict more frequent El

Niño events in similar scenarios (Timmermann et al. 1999;

IPCC 2001), and also a future persistence of the ongoing

positive NAO phase (Visbeck et al. 2001). Notably, a

remarkable result of our study was the positive linkage

detected between the summer ENSO index and regional

rainfall in the south-western Mediterranean, an unexpected

coupling according to recent evidence (Rodó et al. 1997;

Rodó & Comı́n 2000). Moreover, a significant teleconnec-

tion was found between the NAO and the ENSO during

boreal summer throughout the study period. Although no

clear connection was previously suggested for the North

Atlantic grid and the Pacific equatorial basin (Rodó et al.

1997; but see Hoerling et al. 2001), a further analysis shows

that the strength of this boreal summer covariation has been

increasing during the last 40 years (Fig. 1b). Thus, as

standard GCMs forecast a counterintuitive dramatic

decrease in summer rainfall for this region in the following

years, any prediction on the effects of future climate change

on ecological processes in the south-western Palaearctic

might be largely precluded by these results. However, they

suggest that ecologically similar species might be responding

in a same way to large-scale climatic fluctuations in this

geographical area, and stress the need for further research

on this topic.

In conclusion, our results add to some recent findings

(Sæther et al. 2000; Bjørnstad & Grenfell 2001; Coulson et al.

2001; Thompson & Ollason 2001; Rodó et al. 2003; Durant
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Figure 3 Standardized brood recruitment dynamics of O. leucocep-

hala in Spain during the period 1980–2000. Vertical grey bars in the

graph denote strong El Niño years, according to the IPCC (2001),

while arrows indicate the 1-year lagged recruitment events apparent

after each El Niño episode.
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et al. 2004) to suggest a complex intertwining between

endogenous (e.g. density dependence), exogenous (climatic

variability) and stochastic forces in population dynamics,

and extend them by suggesting that future research on

population regulation might gain insight by focusing on how

these forces are structurally interrelated to generate a

dynamical pattern at the population level. For instance,

our data have shown that whereas climatic teleconnections

can take place within a few weeks, these couplings can

generate biological signals with several time lags, and with

complex non-additive effects on both the spatial and

numeric components of the dynamics. Moreover, as a

further challenge to ecological research under climate

warming scenarios, they suggest that the effects of large-

scale climatic anomalies on population dynamics can be very

strong even in geographical areas exceptionally distant from

their centres of action. New ecological time-series modelling

techniques, such as the structural modelling with latent

constructs approach, will be instrumental in untangling

complex interactions in the climate–ecology interface.
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