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Abstract

Time-series analyses in ecology usually involve the use of autoregressive modelling through direct and/or delayed difference
equations, which severely restricts the ability of the modeler to structure complex causal relationships within a multivari-
ate frame. This is especially problematic in the field of population regulation, where the proximate and ultimate causes of
fluctuations in population size have been hotly debated for decades. Here it is shown that this debate can benefit from the
implementation of structural modelling with latent constructs (SEM) to time-series analysis in ecology. A nonparametric boot-
strap scheme illustrates how this modelling approach can circumvent some problems posed by the climate—ecology interface.
Stochastic Monte Carlo simulation is further used to assess the effects of increasing time-series length and different parameter
estimation methods on the performance of several model fit indexes. Throughout, the advantages and limitations of the SEM
method are highlightedo cite thisarticle: P. Almaraz, C. R. Biologies 328 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Analyses en séries de temps en écologie par modélisation structurale avec constructions latentes : concepts, méthodes
et applications. L'analyse en séries de temps en écologie font habituellement appel & une modélisation autorégressive par des
équations différentielles directes et/ou retardées, ce qui restreint drastiquement la capacité du modélisateur a structurer de:
relations causales complexes dans un contexte a variables multiples. Ceci est particulierement problématique dans le domain
de la régulation des populations, pour lequel les causes proximate et ultimate des fluctuations de la taille de la population ont
été vivement débattues depuis des dizaines d’années. On montre ici que ce débat peut tirer profit de la mise en ceuvre d’une
modélisation structurale avec des constructions latentes (SEM) pour I'analyse des séries de temps en écologie. Un schém:
bootstrapnon paramétrique illustre comment cette approche de modélisation permet de contourner certains problémes posés
par l'interface climat—écologie. Une simulation stochastique de Monte Carlo est utilisée pour mettre en évidence les effets de
longueurs de séries de temps croissantes et de différentes méthodes d’estimation des parameétres sur la performance de plusiet
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indices d’ajustement du modéle. Les avantages et les limites de la méthode SEM sont ainsi mis en Pouarieiéer cet
article: P. Almaraz, C. R. Biologies 328 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction R = f(N¢...Nar, W, Up, Zy, &) (2)

SeeFig. 1a for a visual depiction of the relation-

During the last 70 years, population ecologists have ships between the variables in E@). However its
been debating hotly on whether intrinsic or extrinsic simplicity and generality, several caveats underlie this
factors are more relevant in generating a population modelling procedure. First, ER) implicitly assumes
dynamical pattern, and the majority of the hypothesis that there is no temporal correlation in (specifi-
advanced on this respect have been tested on both thecally, that it describes a white noise process with con-
oretical and experimental grounfds2]. However,and  stant varianc¢8,16]); nevertheless, Morai7], when
somewhat paradoxically, most of the major theoretical analysing the time series of Canadian lynx fur returns
and empirical advances within this field have been de- with an AR model[16], was the first to note that this
rived with the time-series analysis of fluctuations of assumption would not hold in many cases (see @so
natural, unmanipulated populations, and the use of au- 16]). Indeed, the introduction of autocorrelation in any
toregressive (AR) models and its extensions has beencovariate has been shown to increase the magnitude
key during this development (see, e[857]). The use of statistical density dependends8—20] Second, the
of AR models is justified by the fact that the trajec- presence of multicollinearity among the set of covari-
tory of a population through time can be described ates inflates the variance of individual parameter es-
as a dynamic system with some kind of feedback in timates (the so-called variance inflation effgéi]).
population size[8]. Thus, most authors (e.d8,9]) Third, the presence of measurement error (e.g., sam-
have advocated the use of direct and/or delayed differ- pling variability) tends to distort the estimate of para-
ence equations, which take the general, deterministic meters and associated uncertainfies]. And fourth,

form: the inclusion of nonadditive effects of climate on the
dynamics[11] is severely limited within the frame-
R, = f(Ny) (1) work of Eq.(2).

In recent years, several modelling approaches, such
where R, and N; are the population growth rate and as state-based mode]82,23] and variance compo-
size at timer, respectively. The functionf (-) can take nents method§24—26] have been proposed in or-
both linear and nonlinear forms. Additionally, some der to overcome the effects of sampling variance and

environmental covariate (e.g., rainfalf;), can be in-  coloured residuals on population models. Neverthe-
cluded in Eq.(1) in order to account for variability less, both the role of multicollinearity and the statis-
in R, unexplained by population size (e.f§L0]); for tical modelling of nonadditive climatic effects have

instance, a standard practice in recent years is to in- been seldom explored (sfkl,21). In the present pa-
clude as a covariate in E¢l) some proxy index of a  per, a modelling procedure is described that is able
large-scale climatic oscillator, such as the North At- to simultaneously circumvent the problems outlined
lantic Oscillation (NAO,U;) or the El Nifio/Southern  above. Indeed, it has been recently applied to study the
Oscillation (ENSO/Z;; see[11-13). If we further al- dynamics of a globally threatened bird, with success-
low for time-independent noise iR, (¢;) and for time ful results[27,28] The technique, known as Structural
lags in the feedback control, E¢L) can be rewritten Equation Modelling (hereafter SEM), was originally
as the general, much used stochastic form (¢19., proposed by the evolutionary biologist Sewall Wright
14,15} seeFig. 1a): [29,30]as a path analysis method, and was later devel-
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Fig. 1. Graphs depicting two possible topological relationships between a set of ecological and climatic variabjeshénstandard au-
toregressive model with environmental covariates is shown as an unstructured path model; the dotted arcs connecting the set of covariates
represent unresolved relationships. A simple topological transformdg)ali¢w a more realistic depiction of the relationships between the set

of variables in 4), yielding a structured path model. SEM deals with the kind of models representef In both figures, variables; rep-

resent time-independent stochastic variation, and gaddtand for a parameter. The direction of arrows indicates the direction of causation

(a doubled-headed arrow denote a simultaneous covariation).

oped by econometricians, sociologists, and artificial 2. Preliminary concepts

intelligence researchef81]. In a first part, the con-

cepts, philosophy and methodology underlying SEM 2.1. Path analysis

will be briefly outlined and placed in an ecological

time-series perspective. In order to illustrate the po-  Wright [29] was the first to propose a method to
tential of the procedure, an ecological example will partition both direct and indirect relationships among
be presented in a second part along with real data, a set of variables, latter called path anal\8ig]. So-

and the advantages and limitations of SEM relative to ciologist, econometricians and artificial intelligence
traditional technigues will be highlighted in a final sec- researchers have been using path analyses and its ex-
tion. tensions ever since the fifties and six{ig8,33] How-
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ever, it was not until the seventies when biologist first indicator variables and their errors) and a structural
used path analysis in both experimental and observa-model (the set of latent constructs). This definition can
tional approaches (s§83—36] for reviews). Indeed,  be represented algebraicdlBi,43] Ben am x 1 vec-

in addition to Wright it was Haavelm[87], an econo-  tor containing the endogenous constructs (e.g., popu-
metrician, who made the first attempt to lay down the lation density and growth rate; ség&g. 1b), and be
foundations of the vast and growing field of SEM. & an x 1 vector containing the exogenous constructs

Path analysis, and associated path diagrams, can bde.g., large-scale climatic anomalies); additionally, be
regarded as a first step in SE[@8,39] Path analy- ¢ am x 1 vector of errors on the endogenous con-
sis allow the construction of a set of mathematical structs. The connection between these three vectors
equations describing the patterns of covariance amongcan be represented as the canonical structural equation
a set of variables, as proposed by a substantive (ver-for latent variable$31]:
bal) hypothesis. The visual depiction of a path analy-
sis is called a path diagram (séég. 1 for an ex- ~ 1=Bn+T§+¢ ®)
ample). The parameters of individual covariances (or where B is am x m matrix describing the interrela-
correlations) are then estimated while holding the rest tions between the endogenous latent constructs (para-
of variables constaniB3]; if this estimation is done  meterspy, ps, and pe in Fig. 1b), andI is an x n
on standardized variables, the correlations are inter- matrix describing the effect of exogenous on endoge-
preted as standardized partial regression coefficientsnous constructs (parameteps and p). The set of
(indeed, multiple regression can be regarded as a specanonical equations for the measurement models, link-
cial, unstructured version of path analysi81,33). ing the observed indicators to the latent constructs, can
Examples of the current use of path analysis in biol- be found, for instance, if81,43] Refs.[31,33] pro-
ogy include the study of complex patterns of selec- vide particularly clear and extensive treatments of the
tion on phenotypic traitf34,36], and the examination  concepts and methods of SEM.
of direct and indirect effects in dynamic interaction The use of SEM, with its explicit distinction be-

webs[40-42] tween latent and indicator variables, has been partic-
ularly scarce in ecological and evolutionary research
2.2. The Structural Equation Model ([27]; but se€[44] for an early example). Myers and

Cadigan[24,25] and Fromentin et a[26] propose a

The language of SEM requires the notion of la- variance-component method to estimate the effects of
tent variablg31]. Every observation of a natural phe- population density at different vital stages and stochas-
nomenon is imperfect, and is made with some mea- ticity on the regulation of fish populations; although
surement error. Thus, an observed (manifest) variable, these authors did not explicitly state it, this method
such as the abundance estimates obtained throughs essentially a SEM, but, given that their model is
stratified transects, is always amlicator of some un- just-identified, there are no degrees of freedom left to
observed (latent) random variable (the true abundance;estimate the goodness of fit of their model to the the-
also known as factor or construct). If we consider that oretical one expected given their data (§28,41,45]
the correlation between the latent variables and its in- for similar ecological examples, and see below).
dicators are perfect (i.e., there is no measurement er-
ror), we have a path modg3]. Nevertheless, these 2.3. Causality
correlations are probably never perfect, so we need a
measurement model relating the set of indicators to  Both path analysis and SEM are directly related to
each latent variable. That is, a measurement modelthe somewhat controversial notion of causali@g].
specifies thestructural modelconnecting the set of Indeed, besides the less used Neyman—Rubin’s po-
latent variables to one or more indicat¢gd]. If we tential response model, SEM stands out as the main
further assume some kind of causal relationships be- language of causalit{d2]. However, scientists in gen-
tween the set of latent variables, we have a full struc- eral, and philosophers and statisticians in particular,
tural equations modé¢B1,33,43] Thus, a SEM is just  have been largely aware of providing a clear definition
the combination of a measurement model (the set of of causality [32,46,47]for ecological examples), but
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several attempts have been madeaxiomiseit [33, (verbal) hypothesis concerning the natural phenom-
38]. Thus, for a relationship to be considerealisa) enon under study. Indeed, this is probably the most
four conditions should de mg3,38]. First, it must be important step in SEM, because the following steps
transitive, in the sense that if a variable A causes B, will depend upon the assumptions made by the ver-
and B causes C, then A must necessarily cause C.bal hypothesis. For instance, a sound knowledge of
Second, the relationship must obey the Markov con- the natural history of a given species will allow us
dition, by which the relationship A> B — C impose to construct a meaningful SEM and adopt the con-
the restriction that the response of C to A is impossi- firmatory approach, otherwise we should use the ex-
ble if the response of B to A is blocked. Third, events ploratory approach to find the topology that more plau-
must be irreflexive, that is, a variable cannot cause sibly captures the structure of covariance underlying
itself. And fourth, the relationship must be asymmet- our data (se§33-35,38,51for controversies; see also
ric: if A causes B, B cannasimultaneoushcause A Section5). Once we have constructed the verbal hy-
(unless there are temporal feedbacks). Although somepothesis, we initiate thepecificatiorstage. Overall, at

of these conditions might seem trivial, they are usu- this stage we must specify the followif@f]: relation-

ally forgotten in ecological modelling. For instance, ship between latent variables; relationships between
Stenseth et a[13] recently suggested that the use of latent constructs and their indicators; functional forms
proxy indexes of large-scale climate in population dy- of these relationships, and distributional assumptions.
namic studies provide the advantage of summarizing The next step is thédentification of the model; at

in a single measure the complex spatio-temporal vari- this stage, we must estimate the degrees of freedom
ability of local weather. Nonetheless, it should never (d.f.) of the SEM, calculated as the difference in the
be forgotten that a biological population (C) is only af- number of variances and covariances in the model
fected by local weather (B), which in turn is a function and the number of free parameters to estimate. Thus,
of large-scale climate (A). Since the relationship be- a model with d.f.= 0 is just-identified(that is, the
tween local and large-scale climate is usually nonsta- model is just as complex as reality), and we cannot

tionary and nonlineafl3,48], this point should never
be neglected. Finally, it should be noted that the notion
of causality in this context must be hgbdobabilisti-
cally [46], in the sense that a relationship is said to
be causal because there ip@pensity[49] for the
effect to follow the cause. This axiom of causality is
thus very important if we are to provide meaningful
models describing the dynamics of natural popula-
tions.

3. Methods
3.1. Stages in Structural Equation Modelling

In this section the main steps involved in the con-
struction of a structural equation model will be de-
scribed briefly, and in the next section an ecological
example will be presented to illustrate more clearly the
matter. At a first stage, a useful philosophical frame
in SEM is that of Chow[50] regarding the steps in-
volved in a scientific investigation. Thus, as in many
other areas of scientific research, the building of a
SEM begins with the construction of a substantive

estimate the fit of the observed matrix to the theoret-
ically expected given the causal structiigd]; only
when d.f.> 0 can we estimate the fit, and in this case
the model is said to bever-identified After the iden-
tification stage we initiate thestimationof model pa-
rameters.

3.2. The fundamental hypothesis of SEM

At this stage, the fundamental hypothesis in SEM
is introduced as:

> =5(0) @)

where X stands for the population covariance matrix
of observed variabled is the vector containing the
model parameters, anB () is the covariance matrix
written as a function of the elements én[31]. The
goal of the estimation step is to provide the values in
0 that minimize the discrepancy betweg&hand the
samplecovariance matrix of observed variables) (
that is,§S — ¥ — 0. This discrepancy is usually min-
imized by means of maximum-likelihood (ML) tech-
nigues[31], which assume (1) multinormal distribu-
tion of the variables yieldings, and (2) thatS itself
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follows a Wishart distribution. However, the proper- 4. Applications

ties of ML methods (that they are unbiased, consistent,

efficient, and normal{31]) are asymptotic, holding 4.1. Climatic effects in the dynamics of solitary

only for large samples; additionally, ML assumes that species

the error distribution is stationary (Gaussian). Thus,

other estimation methods, such as Generalised Least- In this section, the concepts and methodology un-
Squares (GLS) or Asymptotically Distribution-Free derpinning SEM will be applied to a real ecological
(ADF), have been proposed (s§27,28,31,52] see example. Time-series data on the dynamics of a Pur-
also Sections below). Additionally, bootstrap tech- ~ Ple Heron Ardea purpureqpopulation Eig. 2 P. Al-
niques[53] are widely used to circumvent violations Maraz et al., unpublished work) will be used. The

of the underlying assumptior{81,33,54] The final dataset comes from terrestrial counts of breeding pairs
step in the construction of a SEM is thagnosis in the Albufera de yalencia (SE Spain),yvhich encom-
stage; once the parameters are found, the fi§ o6 pass small sampling error. A substantive hypothesis

h-accounting for local and large-scale climatic effects on
the dynamics of Heron numbers and their rate of inter-
annual change will be constructed.

The Purple Heron is a large predatory water-
bird, wintering in Tropical West Africa and breeding
throughout Europe. Several authors have shown that
the breeding numbers of Purple Herons in the Nether-
lands[58,59] and Francg60] are strongly dependent
on the weather conditions of the wintering area. Here,
it will also be hypothesised that the population growth
rate is a function of both local rainfall during breeding
and current population size; the data for local rainfall
comes from a meteorological station near the study
area (P. Almaraz et al., unpublished work). Informa-
3.3. Covariances or correlations? tion on weather conditions of the wintering area can be
furthermore included in the model. Previous analyses
(P. Almaraz et al., unpublished work) suggested that
i ) . 1-year lagged spring rainfall is the primary local cli-
variance Structure_Modelllng (C\_/M31])’ itis some- mZtic dri\?(gr of inﬁerzgnnual rate of cr?ange ?;1 breeding
times useful to estimate correlations among variables, numbers; moreover, 1-year lagged summer ENSO and

rather than covariances. For instance, when a model isyaQ indexes (seL1,13]for sources), correlated with
scale-invariant and individual parameters are scale free |4 spring rainfall. ’The path diagra{[ES] depicting

(e.g., after standardisation), correlations will not alter ;g hypothesised relationship is showrFig. 1b.

the structure of the model, and standard errors for pa- 5 preliminary analysis with an AR moddB,8]
rameters will be unbias€86,57} Therefore, Browne  (Fig. 2v) suggests that the studied population is in the
[56] suggested corrections for standard errors basedgynamic boundary between stability and multiannual
on the Constrained Estimation Theory. The use of cor- cycles (dampened stabilit{8]). However, within the
relations is suggested in population modelling since framework of difference equations (AR modefg]),
they represent partial regression coefficients when cal- it would be very difficult to include the indirect effects
culated on standardised variables (but §&&; see  of rainfall on growth rate through population size, that
also Section2.1), thus allowing for direct compar- s, to account for nonadditive effects of climate. Nev-
isons among parameters within and among models. ertheless, within the framework of SEM, this problem
Note, however, that the magnitude of parameter esti- is largely circumvent. First, b&, the population size
mates will depend upon the causal structure assumed(breeding pairs) at time, let X, be log,(¥;), and let
[31,36] AX, = X,;11 — X, stand for population growth rate.

XY can be assessed by means of goodness-of-fit tec
niques; if the assumptions of the model hofiHas a
Wishart distribution), the discrepancy betwegmnd

¥ is assumed to follow an asymptoti@ distribution
[31,33] Additionally, we can assess the final sam-
pling distribution of S, the presence of outliers in the
sample, the distribution of residuals, etc. Several sta-
tistics (Likelihood ratio, Lagrange multipliers, Cross-
Validation Index, etc.) are currently available to that
end (sedq31] for a thorough review). A comparison
among alternative and/or nested SEMs is also possible
using Information Criterigs5].

Although SEM techniques are also known as Co-
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-o- Population size Be W,_1 spring rainfall Fig. 2a) and be; a set of [ID
a B <e-Spdngranil (identical and independently distributed) random vari-
1 ables. Finally, let,_» and Z,_» stand for the NAO
and ENSO indexes, respectively. Assuming a Gom-
pertz (log-linear) autoregressive model of first order
([8]; seeFig. 2v), and allowing for the covariation
between large-scale climatic phenomena, the set of
equations suggested by the verbal hypothesis proposed
(Fig. 1b) can be written as:

g

iy W g

8
Spring rainfall

Population size

82 84 86 83 90 92 94 96 98 00 AX; =y + QA +n)X; +n2W,_1+ o018 (5)

Y(eaz)ir Xy =t +n3Wi—1+ o028 (6)
Wici=pu+8&&U2+82Z 2+ 038 (7
10 %-3 = COV(UT,]_, Zl*l) (8)

us The population variance—covariance matriX)(is
therefore given irrig. 3.
08 In Egs.(5) to (8)y, T, u, n;, &, ando;, are free pa-
e rameters to be estimated from the observed variance—
Direct density-dependence covariance matrix§). Note, however, that parameters
y, T, andu are intercept terms; although they are eas-
ily implemented in SEM (e.g[8, p. 129), it will not
s be estimated here for simplicity (see aJ26]). At this
4 . . ISpfing rainfall . stage, we must construct measurement equations re-
1 3 5 7 9 11 13 15 17 19 lating the true observations to the observations made
Peatiod during each survey, by means of detectability func-
(be):rlo tions[26,61] Letx; be the true log-population size at
timet, and letd, be the log-detectability of;; if we let
Fig. 2. @ Time-series of Purple Heron population dynamics (num- ‘Sx,t be the observation errors of the Iog-transformed
ber of breeding pairs) and spring rainfall variability in the Albufera  counts, we gef27]:
de Valencia, Eastern Spain, during a 20-year period. The declining
trend of population size through time was subtracted with a cubic x; = X; [dx]_l + 6yt 9)
polynomial[71]. (b) Spectral densities of the time-series &) as . . . .
a function of period; a Hamming window was used to smooth the Unfortunately, there is no information available on
spectral curvg71]. The inner graph in the upper right part df) ( the observation error fok, in Fig. 1a. Nevertheless,
shows the dynamics of the autoregressive model in the parameter since breeding Purple Herons are easily detectable

space[8]; outside the triangle, populations tend to extinction, and during terrestrial visual counts, a 930% of de-
below the parabola multiannual cycles arise; within the area between -

the triangle and the parabola populations exhibit dampened stabil- te.CtabllltY can be Safely assumed tthUQhOUt the sam-
ity (on the right) or two-years cycles (on the left). The solid square Pling period. Thus, for each survey in the raw data,
denote de position of the Purple Heron time-series in the parameter 100 simulated counts were randomly subtracted from

space. a normal variable with meak, /0.9 and coefficient of

—-
o

dependence
o
o

E-N

Delayed density-

Population size

%]

Spectral density

Var(AX;) Cov(AX;,X;) Cov(AX;,W;,_1) Cov(AX;,U,_2) CovuAX;, Z;_7)

Var(X;) Cov(X;, Wi_1) Cov(X;,Us—2) Cov(Xy, Zi_p)
Y= Var(W;_1) Cov(W;_1,U;—2) Cov(W;_1,Z;_2)
Var(U;—2) Cov(U; -2, Z;—2)
Var(Z;_»)

Fig. 3.
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variation 0.3. The meatt standard error of each count  bias-corrected bootstrap method (BC{27,62)). All

in the time-series was then recalculated from the sim- the analyses performed below were conducted in the
ulated values, and the error variance of the observation SEPATH module of STATISTICA 6.163,64]

errors (see below) was estimated from a linear regres- The observed variance—covariance matrix shows
sion between the standard deviations and the means orevidence of departure from multivariate normality
the log scale[@6]; the correlation between the realand (Mardia-baseKappa= —0.201;[64]). Indeed, boot-
simulated counts was, however, very high= 0.91, strap resampling of the Mly? statistic shows a wide

P < 0.001, N = 18; see alsq27]). (For simplicity, range of variation relative to the distribution of the
no sampling error will be assumed for rainfall values; GLS statistic (coefficient of variation, C¥ 55%
note, however, that the procedure to implement them and 31%, respectively; log-variance ratib,= 2.55,

in the model would be the same.) P < 0.001; seeFig. 5. Additionally, the ML x? sta-

In order to estimate the biological parameters in tistic (5.504,P = 0.239, d.f.= 4) had a 90% BCCI
Egs.(5) to (8), a set of distributional assumptions re- of 1.092-10.927, which corresponds to a range ef
garding the model must be mad26,27] For con- values of (0.896-0.027). On the other hand, the GLS
venience, | will follow Refs.[24,26,31]in the nota- x? statistic (3.895,P = 0.420, d.f.= 4) had a 90%

tion. (1) Both log-transformed population siz¥,{, BCCI of (1.416-5.853), and a range #fvalues of
and rainfall (W;) were assumed to be drawn from (0.841-0.210). Therefore, the bootstrap GLS method,
time-invariant, normal distributions with means which is robust against slight departures from nor-

and constant variances; thatis,X; ~ N (u1, ¢1) and mal kurtosis[31], suggests that the structural model
W, ~ N (2, ¢2). (2) The inter-annual stochastic vari- proposed inFig. 1b is consistent with the theoretical

ability impacting on each endogenous variatg is model expected given the data. On the other hand, the
assumed to describe a white noise process with 0 meanML x? statistic shows a wide range of variability, and
and constant variance;; that is, &; ~ N (0, ¥1_3). bootstrap resampling suggest that the observed model
(3) The observation error8, ;, are unbiased, indepen- might not be consistent with the expected model.

dent, and additive on the log scdi&,26} the error Table 1shows the bootstrap-GLS parameter esti-
variances are denoted By, sos, ; ~ N(0, 6,). (4) Fi- mates and associated uncertainties. As can be seen, the

nally, NAO and ENSO proxy indexes were drawn error variance {,) tended to underestimate density-
from time-invariant, normal distributions with means dependencen) and the climatic effecti(s; Table 3
v1 and vy, and constant varianceg and ¢, respec- relative to the simulated valu@dble 1a); on the other
tively; that is, U;—1 ~ N(v1,61), Zi—1 ~ N(v2, 52). hand, decreasing, increased the magnitude of both
Considering that both of them were measured without parametersTable 2. This result is consistent with
noise, and collecting variances across terms, m@irix  the findings of Fromentin et a[26] with the Nor-
can now be rewritten as shownHig. 4. wegian Cod along the Skagerrak coast. In any case,
A cautionary note should be made. Given that some bootstrapped uncertainty was, in general, a 30% larger
variables (e.g.W;) will have highly skewed distribu-  than normal theory values across nearly all parame-
tions, the assumed wishart distribution of the observed ters (not shown). Altogether, results suggest that the
matrix, S, will probably not hold in general ecological effect of rainfall on growth rate operates both directly
settings. Thus, unknown parametersdnwere esti- (n2) and indirectly through population sizes in this
mated with both ML and GLS methods, and associated population, thus providing evidence for nonadditive
uncertainties were assessed with the nonparametriceffects of climate on growth ratf1,27] Addition-

(02 +12)pl+ 1 +6x n1e1 n2¢2 0 0
13)p1 + V2 + Ox 1391 0 0

z= E2+EDe2+V3 (p3+V3)EL (p3+ V)2
S1 &3

S2

Fig. 4.
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> 200 GLS Table 1
g | Parameter estimates and 90% bias-corrected bootstrap confidence
a:J n interval (BCCI) for density dependence], rainfall effect on
o | growth rate f2), rainfall effect on population sizey§), NAO ef-
qqs__'" fect on rainfall €1), ENSO effect on rainfall4,), and NAO-ENSO
3 i teleconnectiongz), assuming an error variancg;( of 0.22
& 100 Parameter Estimate —90% BCCI +90% BCCI
g m —0.366 —0523 Q080
% n2 0.460 Q010 Q704
Ie) n3 —0.328 —0.505 Q114
2a) £ 0.334 —0.167 Q774
0 T T T T T T & 0.356 —0.286 Q782
0 2 4 6 8 10 12 14 &3 0.591 Q005 Q0810
Chi-squared value
@ Table 2
300 Same aSable 1 but assuming a 50% of lower variancesin
Z ML Parameter Estimate ~ —90% BCCI +90% BCCI
b nm —0.433 —0.654 Q075
2, 2004 2 0.460 Q010 Q704
L n3 —0.470 —-0.692 Q131
G
- & 0.334 -0.167 Q774
g & 0.356 —0.286 Q782
o &3 0.591 Q005 Q810
S 100 1
=
w
5]
=] Table 3
&= Same agable 1 but assuming a 50% of higher variancedin
0- ; ) - - |
0 10 20 30 40 50 Parameter Estimate —90% BCCI +90% BCCI
hi- red val N1 —0.144 —0.356 Q125
C RS ed value n2 0.460 Q010 Q704
(b) 73 ~0.129 —0.505 Q114
334 —0.167 774
Fig. 5. Frequency distributions of the bootstrapped set of Maximum zl g 326 _8 226 8782
Likelihood (ML, in (a) and Generalised Least-Squares (GLShin ( Ei 0'591 0'005 0810

goodness-of-fit statistics of the model suggested-ly 1b. The
arrow denote the point estimate of the statistic, and the vertical dot-

tﬁgtgrlﬁz%?f?«;:a:?sgc(:ﬁnzli?_tchzgci;e_d ootstrap confidence interval teresting to investigate the behaviour of several fit
indexes with increasing time-series length. There-
ally, the large-scale climatic effects on local weather fore, an empirical Monte Carlo simulation was con-
are not negligible, and the model further suggest that ducted at several time-series lengl63,64] using the
both oscillators were indeed teleconnected during the data and the SEM model for the Purple Heron dy-
study period. Although for reasons of space they are namics. For each simulated lengtN,2N, ..., 16N,
not shown, performing the analysis with nested mod- where N = 18 years), 100 random SEMs were sub-
els[33] yielded identical results, and suggests similar tracted from the multivariate distribution of the co-
parsimony and fit accuracy among models. variance structure suggested Big. 1b; during each
simulation, two measures of fitting accuracy were as-
4.2. Fitting accuracy and time-series length: a Monte sessed: the scaled Akaike Information Criterion (AIC
Carlo simulation [55]) and the Brown—Cudeck Cross-Validation Index
(CVI [31]). The smaller the value of both, the larger
Since the statistical properties of both GLS and the fitting accuracy of the model testg&1]. Two sets
ML methods are asymptoti¢31], it would be in- of simulations were conducted, one with a GLS es-
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Fig. 6. Behaviour of the scaled Akaike Information Criteri@), (b) and the Brown—Cudeck Cross-Validation Inde, (d) with increasing
time-series lengthdN, whereN = 18 years). Shown are mean values (symbols) and 95% confidence Intervals (vertical lines) of 100 Monte
Carlo simulations performed with the covariance structure suggesteig bib at each time-series length, using both Generalised Least-Squares
(GLS, in black) and Maximum Likelihood methods (ML, in grey).

timation of parameters and fit indexes, and the other number of free parameters. Overall, since ecological
with a ML estimation; the same random seed was time-series are usually short, noisy, and nonlif@&ar
specified at each simulation, so that the same sequencel9,22,23] with lengths of less than 50 years in most
of random values were generated at each replication. caseg65], GLS methods should thus be preliminarily
This guaranteed that the only difference among the considered as more robust alternatives to 27 (28],
two sets of simulations was the parameter estimation see alsd52] for an extensive review of the sociologi-
method[63]. cal literature).

Results of the simulatiorH{g. 6) suggest that both
the AIC and the CVI decline sharply with increasing 4.3. The behaviour of alternative modelling
time-series length, an expected result given that both approaches
indexes are explicit functions of sample size. However,
the simulated variance of both indexes with shorttime-  As stated in the Introduction section, most of the
series (V; Fig. 6) was higher in the ML method thanin  ecological time-series modelling efforts make use of
the GLS method (log-variance ratio, AlG: = 3.48, unstructured, simple autoregressive models to derive
P < 0.001; CVI: F =372, P < 0.001); in spite of parameter estimates and conduct ecological inference
this, the mean value of the fit indexes were roughly (see, e.g.[7,9,11,16,22,66] In this section such a
similar across methods, and both their mean and vari- model is constructed for the Purple Heron through
ance converged with increasing length of the time- Generalized Linear Modelling (GLZ27,64), in or-
series. Thus, simulation results suggest that the fit- der to compare the relative statistical performance be-
ting accuracy of GLS methods might be more robust tween the SEM approach and the unstructured scheme.
against sampling variability at low sample sizes rela- This model would take the topological form shown in
tive to ML methods. This results adds to previous find- Fig. l1a, which can be written as:
ings[52] suggesting a larger statistical power of GLS,
relative to ML, at low sample sizes in SEMs with equal f(#ax;) =ao+apX; +arWi +anUi +aeZ; (10)
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Table 4

Results of the fitting of the GLZ to the Purple Heron dataset. Each
model is indicated byA X;[-], where[-] contains the parameters in-
cluded within each model tested = density-dependencer =
rainfall effect;an = NAO effect;ag = ENSO effect). All the possi-

ble models within the full one are shown and ordered according to
the Akaike Information Criterion (AIC). The Likelihood-Ratio test
(L-R x?2) with associategh-value is also shown for each model. The
model selected is shown on bold type

Model AIC L-Rx2  p-value

AX;lap +ar +an] 35434 22613 0000049
AX;lap + ag] 35796 20257 Q000040
AX;lap +an] 36175 19878 Q000048
AXjlap +ar+an+ag] 37194 22858 Q000135
AX;[ap] 37446 16607 Q000046
AX;lap + ar +ag] 37739 20314 Q000146
AX;lap +an + ag] 38173 19879 0000180
AX;lap + ag] 38.666 17386 Q000168
AX;lar + an] 41518 14534 Q000698
AX;lag +an + ag] 43502 14550 Q002244
AXilar] 44.778 9275 Q002323
AX;lan] 44,912 9141 Q002499
AX;laR + ag] 45810 10242 Q005967
AX;laN + ag] 46.460 9592 Q008259
AX;lag] 49251 4801 0028427

where parametety is the interceptap stands for the
density-dependent effect on growth ratg,stands for
the rainfall effect on growth rateyy for the NAO ef-
fect on growth rate, andg for the ENSO effect on
growth rate. The terny (uax,;) is the inverse (link)

of the function relating the observed values to the pre-
dicted values (denoted Rya x;). In a Maximum Like-
lihood scheme, a log (nonlinear) link between the ob-

served and predicted values and a normal error struc-

ture will be assumed.
Table 4shows the results of the fitting of E¢LO)
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Table 5

Parameter estimates for the full modalX; [ap + ar + an + ag])

and the best one selected by the AI€X;[ap + ar]) within the

GLZ modelling of the Purple Heron data. Point estimate and asso-
ciated standard error (S.E.) is shown for each parameter estimate
along with the Wald statistic and associajedalue

Model and parameters Estimate S.E. Wald p-value
statistic

AX;lap +aRr +an +ag]
ENSO (ag) —0.085 Q170 Q247 Q619
NAO (ay) 0279 Q169 2732 Q098
Rainfall (aR) 0.284 Q158 3239 Q072
Population density (ap) —0.518 Q160 10557 Q001

AXilap +aRl]
Rainfall (aR) 0.316 Q157 4046 Q044
Population density (ep) —0.612 Q157 15130 Q0001

ap andag even increased in moda&lX;[ap + ar] rel-
ative to modelAX;[ap + ar + an + ag] (Table 5.
Thus, a full GLZ model including both intrinsic and
multi-scale climatic effects, did not improve the statis-
tical performance of the simplest case of no large-scale
climatic effect, even though the SEM approach pre-
sented in this paper suggest indeed that a full model
including a topologically complex structur€ig. 1b)
provides a highly plausible description of reality (see
Section4.1). This result is identical to that obtained
in Ref. [27] with data from the Spanish population
of White-headed Duckdxyura leucocepha)aand is
due to both the downscaled nature of the climatic dy-
namic effects and to the nonadditive effect of climate
on growth rate through population density ($2€]).
Note, however, that according to the likelihood-
ratio test the statistical fitting of all the possible GLZ
models was relatively good albeit variableable 4.

to the dataset. Besides the saturated model, all the pos-
sible nested models are shown. Although according to 5. Discussion

the Akaike Information Criterion (AIC) the model in-
cluding joint density-dependent, rainfall and NAO ef-
fects was selected, dropping the NAO parameter from
this model resulted in just a slight increase of the AIC
(AAIC = 0.362). Therefore, the final, most parsimo-

5.1. Advantages over traditional techniques

At the present, a wealth of studies provide strong
evidence that both exogenous and endogenous forces

nious model selected included only density-dependent are important in driving the dynamics of a popula-

and rainfall effects A X;[ap + ar] in Table 4. The
difference in the AIC between this model and the full
model (Eqg.(10) and Fig. 1a; denoted byA X;[ap +

ar + an + ag] in Table 4 was of 1.398. Addition-
ally, the magnitude of point estimates for parameters

tion [7,11], and two major developments can be high-
lighted. First, some studies suggest that climatic vari-
ability can interact nonadditively with growth rate
by modifying the population size at equilibriufd,
5,8,66]and by modifying population density directly
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[27]. Second, it is currently recognized that stochas- only to the immediate climate, and the downscaling
tic noise (whether environmental or demographic) and from large-scale climatic patterns to population para-
sampling error may play a major role in the dynam- meters through local weather can yield divergent and
ics of natural populations and in model assessment, unexpected results even within small geographic areas
respectively[3-5,7,9,11] and several methods have (see[12] for an example). Additionally, the presence
been proposed to assess their effects on population dy-of correlation between large-scale climate indexes and
namics models (e.g[6,22,23). Nevertheless, incor-  local weather variables can hinder some modelling ef-
porating nonadditive effects of climate in population forts when using unstructured models (§6&] for
models has prove difficult (but sg#1]), and assess- a recent example). Thus, model selection with SEM
ing the effects of noise sometimes requires extensive must be a two-steps issue. First, one must conduct a
simulation and complex assumptidr$. “local-scale” analysis, in which the main local weather
The technique outlined here provide several advan- parameters driving the dynamics observed must be se-
tages in the light of these recent developments. For in- lected; once they are found, an “up-scaling” analysis
stance, given that a SEM is the combination of a mea- must be aimed at relating those local weather para-
surement model and a structural model, it shares somemeters to large-scale climatic indexes. Through this
conceptual issues with the Kalman filter and related procedure (applied in the example of Sect)nprob-
state-based time-series analysis methods [6£2, lems of model selection with climate variables (which
23] for ecological examples). Indeed, by retaining the are essentially a problem of spatio-temporal scale) are
full observational model and specifying flexible priors largely circumvent with SEM.
a robust Bayesian approach can be easily implemented
in a structural model with latent variablg&3]. Addi- 5.3. Model-data vs. model-reality consistency
tionally, complex but realistic assumptions regarding
the measurement model can be made, for instance, to One of the main advantages of SEM (namely,

correlate perturbations across indicator variaf34s; the specification of the covariance structure expected
this might be desirable in cases involving several or- given a causal structure) can yet turn to be a danger-
ders in the density-dependent structure (e.g.[288. ous feature during model assessment. Indeed, it should

Furthermore, since both direct and delayed statisti- never be forgotten that the issue of whether the model
cal density-dependence might be overestimated in theis consistent with the data is different from the issue
presence of autocorrelations in the error terms and/or of whether the model is consistent with realidj,38].
an exogenous variab[@8-20] a term for such auto-  Forinstance, an exploratory approach conducted using
correlations can be furthermore included in the model some kind of discovery algorithf38,51] can help in
(see[31] for details). Altogether, SEM allows all this  finding a set of modelsonsistent with the dajaiven
information to be accounted for simultaneously in a a rejection levelFig. 7 depicts an example of this phi-
complex and hierarchically structured network of en- losophy applied to the covariance structure studied in
dogenous/exogenous effects, as showign 1b. Ad- Sectiond; as can be seen, both the theoretical topolog-
ditionally, the multigroup SEM methodolod$3] can ical complexity of the causal graph and the ability of
be further extended to study the possible phase de-the algorithm to resolve the direction of causality in-
pendent nature of both the density dependent and thecreases with the rejection level; thus, at very high lev-
causal structure (P. Almaraz et al., unpublished work). els (e.g.,P = 0.90 in Fig. 7) some impossible causal
relationships may arise (for instance, a causal effect

5.2. The issue of model selection of population size at time on the NAO index two
years before). Note, however, that this is not a caveat
As noted by Stenseth et gl13] including local of the discovery algorithm (upon which some restric-

climatic variables instead of large-scale climatic in- tions can be imposed; see alg8,51)), but just the

dexes in a population model, would add a problem of consequence of the algorithm being “blind” to the real
model selection, since several lags should be searchechature of the variables although not to their statistical
in order to find the best structure. Nevertheless, as properties. Thus, a solid natural history and ecological
stated in Sectior2.3, biological populations respond knowledge of the study system (model-reality consis-
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Fig. 7. Several examples of partially directed inducing path gré@8isobtained for the Purple Heron population dynamics. Each graph was
obtained at a specific rejection level (denoted withwith the SRS discovery algorith{33,38,39] using the Method 2 of the program EPA2,
provided in Ref[33]. Double headed lines with solid dots represent unresolved causal relationships. Symbols for varialftes as in

tency) should always be confronted to a sound and the potential of this technique when applied to time-
robust statistical assessment of our model (model-dataseries analysis in population ecology. In the light of
consistency), and vice versa. The issue to be learnedcurrents debates on the nature, causes, and conse-
from this example is best illustrated by Bollerf3l, quences of regulation for natural populations, SEM
p. 68]quote: “If a model is consistent with reality, then might stand out to be a key analysis tool for untan-
the data should be consistent with the model. But, if gling complex multivariate relationships between cli-
the data are consistent with a model, this does not im- matic phenomena and population parameters. Indeed,
ply that the model corresponds to reality.” the main advantage gained through the application of
SEM to ecological time-series analysis is that com-
plex biological assumptions take the form of a sim-
6. Conclusions, limitationsand future prospects ple falsifiable empirical covariance structure that can
be compared with a theoretical model to test for sta-
Throughout this paper, | have commented on some tistical consistence; that is, SEM goes beyond para-
important concepts and methods underpinning struc- meter estimation to provide statistical criteria on the
tural modelling with latent constructs techniques, and plausibility of our initial hypotheses, and further pro-
further provided an ecological example to demonstrate vide tools to compare among alternative models with



314

P. Almaraz / C. R. Biologies 328 (2005) 301-316

data as arbitrator. In this respect, SEM can be framed would provide ecological SEMs with the strong infer-

within the Lakatosian view of scientific development
[68,69]

Finally, some current limitations of the SEM ap-
proach deserving further study must be outlined. First,
although many relationships between climatic phe-
nomena[13], ecological variable$7], and even be-
tween climatic and ecological variablg®] are highly
nonlinear, SEM is, to date, largely limited to univari-
ate linear relationships (but sg&2]). The strategy of
many modelling approaches in evolutionary ecology
is to include quadratic terms in the univariate rela-
tionships to solve for nonlinearity, in the case of, e.g.,
disruptive selection (see review [i@5,36])). However,
gquadratic and monotonic relationships might not be
adequate in some highly nonlinear relationsHif],
which are usually solved through generalized addi-
tive models including extra parameters. This prob-
lem is closely related to the second: the statistical
performance of multiparameterized SEMs involving

small sample sizes and noisy data has prove poor

(e.0,[31,33] see Sectiort.1). For instance, the use
of ADF estimation techniques is recommended only

when sample size is greater than 1000, and both GLS

and ML techniques reach their asymptotic properties
when sample sizes are greater than §54] It is

obvious that both figures are far beyond the longest

population time-series availab]65]. Additionally, a

ential power achieved in other scientific disciplines.
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