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Andaluz de Ciencias de la Tierra IACT (CSIC-UGR), Avda. de las Palmeras 4, 18100 Armilla, Granada, Spain; 3Ethology
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Americo Vespucio S ⁄N, E-41092 Sevilla, Spain

Summary

1. Understanding the impact of environmental variability on migrating species requires the esti-

mation of sequential abiotic effects in different geographic areas across the life cycle. For instance,

waterfowl (ducks, geese and swans) usually breed widely dispersed throughout their breeding

range and gather in large numbers in their wintering headquarters, but there is a lack of knowledge

on the effects of the sequential environmental conditions experienced by migrating birds on the

long-term community dynamics at their wintering sites.

2. Here, we analyse multidecadal time-series data of 10 waterfowl species wintering in the Guadal-

quivir Marshes (SW Spain), the single most important wintering site for waterfowl breeding in

Europe. We use a multivariate state-space approach to estimate the effects of biotic interactions,

local environmental forcing during winter and large-scale climate during breeding and migration

on wintering multispecies abundance fluctuations, while accounting for partial observability

(observation error andmissing data) in both population and environmental data.

3. The joint effect of local weather and large-scale climate explained 31Æ6% of variance at the com-

munity level, while the variability explained by interspecific interactions was negligible (<5%). In

general, abiotic conditions during winter prevailed over conditions experienced during breeding

and migration. Across species, a pervasive and coherent nonlinear signal of environmental vari-

ability on population dynamics suggests weaker forcing at extreme values of abiotic variables.

4. Modelling missing observations through data augmentation increased the estimated magnitude

of environmental forcing by an average 30Æ1% and reduced the impact of stochasticity by 39Æ3%
when accounting for observation error. Interestingly however, the impact of environmental forcing

on community dynamics was underestimated by an average 15Æ3% and environmental stochastici-

ty overestimated by 14Æ1%when ignoring both observation error and data augmentation.

5. These results provide a salient example of sequential multiscale environmental forcing in a

major migratory bird community, which suggests a demographic link between the breeding and

wintering grounds operating through nonlinear environmental effects. Remarkably, this study

highlights that modelling observation error in the environmental covariates of an ecological model

can be proportionally more important than modelling this source of variance in the population

data.
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Introduction

Migratory species must cope with heterogeneous environ-

mental conditions at large spatial scales throughout their

annual cycles, and this can hamper the ability to predict

their population sizes and regulating factors across time

(Fretwell 1972; Webster et al. 2002; Newton 2004). The

dynamic response of migrating populations to factors oper-

ating during the breeding, migration and wintering periods

is translated among seasons through so-called carry-over

effects (Webster et al. 2002; Norris & Taylor 2006). For

example, there is empirical evidence from several bird spe-

cies that local changes in habitat quality and environmental

characteristics translate to changes in individual success

between seasons and geographic locations (e.g. Sutherland

1998; Sillett, Homes & Sherry 2000; Gill et al. 2001). Among

birds, waterfowl (ducks, geese and swans) provide particu-

larly salient examples of extended migratory behaviour

(Newton 1998, 2004; Kear 2005). Throughout the world,

waterfowl populations usually breed widely dispersed over

large geographic areas, but during winter large concentra-

tions can occur in a few key areas (e.g. Weller 1988; Scott &

Rose 1996). These local wintering gatherings can encompass

a major fraction (Almaraz & Amat 2004a) or even the whole

world population (Petersen, Larned & Douglas 1999) of

single species.

In this scenario, factors operating at the wintering sites can

be of critical importance for determining multi-annual popu-

lation dynamics. For instance, many waterfowl species are

the target of severe hunting pressure (Nichols, Johnson &

Williams 1995; Newton 1998), particularly during the winter-

ing season (Nilsson et al. 1999). Stochastic population

dynamics analysis emerges as an instrumental approach for

understanding the long-term dynamics of harvested water-

fowl species, and the adaptive management of exploited

waterfowl populations in North America has indeed pio-

neered the application of stochastic analysis to population

ecology (e.g. Anderson 1975; see review in Nichols, Johnson

&Williams 1995). Nichols, Johnson & Williams (1995) iden-

tified several major sources of stochasticity affecting ecologi-

cal inference. First, environmental variability operating

through habitat changes, local weather variation and large-

scale climate fluctuations affects waterfowl populations

world-wide (e.g. Almaraz & Amat 2004a,b; Ward et al. 2005;

Kéry, Madsen & Lebreton 2006; Sedinger et al. 2006;

Morrissette et al. 2010; reviews in Newton 1998; Sæther,

Sutherland & Engen 2004). Secondly, structural uncertainty

refers to the lack of knowledge on the precise mechanisms

affecting population demography. For example, contradic-

tory evidence has been presented in recent years on the preva-

lence of density dependence (Almaraz & Amat 2004a,b;

Jamieson & Brooks 2004) and interspecific interactions

(DuBowy 1988) in waterfowl populations. Thirdly, partial

observability reflects the imprecision in the sampling of an

ecological system. Processes are observed partially because

they may yield data sets with unknown amounts of observa-

tion error and perhaps also missing data (Clark & Bjørnstad

2004; Freckleton et al. 2006). Assessing the relative impact of

these sources of uncertainty should be the first step towards a

sound ecological inference and adaptive management strat-

egy formigratory waterfowl.

The possibility for strong carry-over effects linking envi-

ronmental changes in wintering areas to breeding perfor-

mance in waterfowl populations has been explored for

single species (e.g. Morrissette et al. 2010), but the analysis

of the long-term sequential environmental conditions expe-

rienced by migrating birds on major wintering areas is

lacking. In the present paper, we analyse the long-term

data (1978–2006) from 10 waterfowl species wintering in a

major wetland of south-western Europe, the Guadalquivir

Marshes (Garcı́a-Novo & Marı́n 2006; Rendón et al. 2008;

Kloskowski et al. 2009). This area is the single most impor-

tant wintering site for waterfowl breeding in northern

Europe (Scott & Rose 1996), with over a million birds

recorded in some years (Nilsson et al. 1999; Rendón et al.

2008). Our main goal is to assess the relative impact of

sequential large-scale climate variability across the life

cycle, local environmental dynamics and biotic interactions

on the long-term wintering multispecies dynamics. As is

typical for long-term ecological projects (Clark & Bjørns-

tad 2004), the information arising from our monitoring

programme contains missing data and observation error.

To this end, here we develop a multivariate state-space

model (MSSM) to assess the interaction between abiotic

and biotic components in a hierarchical time-series model

(e.g. Cressie et al. 2009; Knape et al. 2009). The novelty of

our approach comes from the coupled modelling of two

distinct hidden processes: one for the local environmental

dynamics, represented by the stochastic fluctuations in the

extent of spatial flooding dependent in a hierarchical man-

ner on rainfall variability and large-scale climate fluctua-

tions, and the other for the abundance of the waterfowl

community, which evolves according to a stochastic

dynamics model including biotic interactions together with

large-scale climatic and local flooding effects. Thus, the

structure of our model stems naturally from the ecological

functioning of our study system (Jensen 2001; Almaraz &

Amat 2004a), and partial observability is accounted for

within both the environmental and biological process mod-

elling. Given that observation error and missing data can

both degrade the inference derived from population abun-

dance models (e.g. Clark & Bjørnstad 2004; Dennis et al.

2006), a specific goal of our analysis was to test the impact

of partial observability on the estimation of biological and

environmental effects.

Materials andmethods

STUDY AREA AND DATA BASE

The Guadalquivir Marshes, located in south-western Spain (Fig. S1

in Appendix S1, Supporting information), is one of the largest and

best preserved Mediterranean wetland ecosystems in the world

(Garcı́a-Novo & Marı́n 2006). It contains a complex mosaic of
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natural wetland and artificial salt pans, ricefields and fish farms

within a huge (180 000 Ha) inner delta originated in the alluvial flood

plain of the Guadalquivir river (see Fig. 1 and Fig. S1 in Appendix

S1, Supporting information; Garcı́a-Novo & Marı́n 2006; Rendón

et al. 2008). The study area is largely protected as a Ramsar site

(29 640 Ha), an EU Specially Protected Area (50 720 Ha), a Bio-

sphere Reserve (77 267 Ha) and a UNESCO World Heritage site

(29 640 Ha). In order to estimate the relative abundance of water-

fowl, a total of 91 890 ha within the Guadalquivir Marshes have

been surveyed from the air on amonthly basis since 1978 (seeRendón

et al. 2008 for details). In this study, we analyse replicate censuses for

December and January wintering counts up to 2006, most performed

within 2 weeks; because the majority of migrating birds arrive in the

study area by November (Rendón et al. 2008), these estimates

yielded the largest repeatability, the smallest seasonal variance, and

thus reflect the wintering population with a greatest accuracy. We

focus on the 10 most abundant waterfowl species (Fig. 2): greylag

goose (Anser anser), common shelduck (Tadorna tadorna), gadwall

(Anas strepera), mallard (Anas platyrhynchos), northern pintail (Anas

acuta), northern shoveler (Anas clypeata), common teal (Anas

crecca), Eurasian wigeon (Anas penelope), common pochard (Aythya

ferina) and red-crested pochard (Netta rufina). These species are

easily detectable during the aerial surveys and cover a wide range of

population densities and life histories. In Table S1 of Appendix S1

(Supporting information), we summarize the population characteris-

tics and the international importance of the study area for each

species.

ENVIRONMENTAL AND CLIMATIC DATA

In wetlands, flooded surface area is a good surrogate for the amount

of habitat and food resources available to birds (Newton 1998). Fig-

ure 1 shows the yearly variations in the spatial flooding extent during

winter in the Guadalquivir Marshes. The spatial data for December

and January replicates were estimated from satellite imagery. From

1978 to 1984, flooding data come from LandsatTM MSS imagery

(http://landsat.gsfc.nasa.gov/) with a nominal 60 · 80 m pixel reso-

lution; from 1985 to 2005, we used Landsat� and ETM+ imagery

with 30 · 30 m pixel resolution. The yearly amount of flooding

within the study area depends almost exclusively on rainfall levels:

the accumulated precipitation from September to January is a good

predictor of the expected flooded area in January (R2 = 70%,

P < 0Æ001). Owing to adverse environmental conditions (extreme

cloudiness) and logistical problems (Landsat passage schedule),

11 years had to be treated as missing values using the cut() function

in OpenBUGS (see below). Monthly rainfall data were obtained

Fig. 1. Time series of spatial flooding extent during winter in GuadalquivirMarshes (lower left) and theNorth Atlantic Oscillation (NAO) index

(lower right). The log-transformed satellite-derived estimates of flooding extent are shown for December (open squares) and January (black

squares). Posterior predictions and 90% highest posterior density intervals for the hidden flooding states are shown with black and grey dotted

lines, respectively. In the lower right, the NAO index during the last half century is shown for the breeding period (grey line), averaged from

March to October, and the wintering season (black line, fromOctober to January). In the upper level of the figure, the hydroperiod is shown for

two consecutive years; this variable quantifies the number of days that each modelled pixel remained flooded in Guadalquivir Marshes, with

1 pixel = 900 m2.
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from the meteorological station within the Doñana National Park

(Palacio deDoñana).

To assess the potential effects of climate on population abun-

dance, we used the North Atlantic Oscillation (NAO) index as a

large-scale climate proxy reflecting environmental conditions in

the Northern Hemisphere (Hurrell et al. 2003). We obtained

monthly NAO indices from the NOAA Climate Prediction

Center (http://www.cpc.noaa.gov/data/teledoc/nao.shtml). The NAO

is a north–south dipole of atmospheric anomalies, with one

centre located over Greenland and the other spanning the central

latitudes of the North Atlantic between 35�N and 40�N. Positive

NAO phases are characterized by below-normal pressures over

Greenland and tend to be associated with above-average temper-

atures and precipitations in northern Europe and the opposite in

southern Europe. During prolonged periods dominated by a

particular phase of the NAO, the above patterns can be detected

as far as central Russia and north-central Siberia (see Hurrell

et al. 2003). These geographic patterns match quite well with the

breeding range of the species studied (Table S1 in Appendix S1,

Supporting information). We used a winter NAO index (see

Fig. 1) to estimate the effect of climatic conditions on the abun-

dance of waterfowl at a large spatial scale during wintering.

Within our subset of species, the modal date of breeding onset is

March. After the breeding period, all species moult during the

boreal summer. In the Guadalquivir Marshes, the first migrants

arrive in late October (Rendón et al. 2008). Therefore, we addi-

tionally used the NAO index averaged from March to October

as a proxy for the lagged climatic conditions experienced by win-

tering waterfowl during their previous breeding and moulting

period.

Fig. 2. Time series of winter aerial counts for ten waterfowl species in theGuadalquivirMarshes, and posterior states predicted by the stochastic

Gompertz community dynamics model. The log-transformed population counts for December and January are shown as open and black

squares, respectively. The grey line within each graph shows the posterior states estimated from theMSSM, while the grey dotted lines depict the

90%Bayesian highest posterior density interval of the estimates.
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Modelling environmental forcing of stochastic
community dynamics

PROCESS MODELS

Given that local weather is a function of large-scale climate

(Almaraz & Amat 2004a), we assume rainfall variability dur-

ing winter to depend on the wintering NAO, and subse-

quently we specified flooding extent to depend on rainfall

variability (see Fig. 3). Let rt be the value of rainfall during

winter at time t, wt the wintering NAO index at time t and Ft

the hidden winter flooding extent at time t. Therefore, the

environmental component of the study system, represented

by the first two hierarchical levels in Fig. 3, takes the form

rt ¼ b0 þ b1wt þ gr;t

Ft ¼ k0 þ k1rt þ gF;t
eqn 1

where b0 and k0 are constants and b1 and k1 measure the

impact of the NAO on winter rainfall variability and the sub-

sequent effect of rainfall variability on spatial flooding,

respectively; the terms gr,t and gF,t are the rainfall and flood-

ing process noises, following normal distributions with mean

0 and constant variances r2
r and r2

F, gr,t� N(0, r2
r ) and gF,t�

N(0, r2
F). These variance terms are called the rainfall (r2

r ) and

flooding (r2
F) system errors.

For modelling the community dynamics process (the third

hierarchical level depicted in Fig. 3), we used a stochastic

Gompertz model including interspecific interactions of the

Lotka–Volterra type and environmental effects (e.g. Muts-

hinda, O’Hara & Woiwod 2011). We predict that environ-

mental fluctuations may have nonlinear effects on the

fluctuations in the abundance of most species. For example,

it is known that dabbling duck populations have an optimum

habitat flooding extent, because depths too low or too high

might prevent optimal foraging (e.g. DuBowy 1988; Kear

2005). Therefore, to test for potential nonlinearities in the

functional effects of environmental variables, we included

both linear and quadratic terms for the effects of flooding

extent, NAO during breeding and NAO during winter. Let

ni,t be the ln-transformed wintering abundance of species i at

time t and zt-T be the NAO index during the non-wintering

period at time t-T where T is a variable time-lag accounting

for variable age at first breeding attempt among species (see

Discussion). The Gompertz community dynamics model

with nonlinear environmental effects has the form

ni;t ¼ ni;t�1 þ ri 1�

PS
j¼1

ai;jnj;t�1

ki

2
6664

3
7775þ ci;lFt þ ci;qF

2
t

þ ui;lzt�T þ ui;qz
2
t�T þ di;lwt þ di;qw

2
t þ ei;t

eqn 2

where ri and ki are the intrinsic growth rate and the ln-carry-

ing capacity of species i, respectively. The terms ai,j represent
the interspecific interaction coefficients, expressing the per-

capita effect of species j on i for all the species in the commu-

nity (denoted by S). The parameters ci,Æ,ui,Æ and di,Æ denote the
effects of flooding extent, NAO during breeding and NAO

during winter, respectively, on the abundance of the ith spe-

cies, for both linear (subscript l) and quadratic terms (q) of

these variables. Given that the interpretation of quadratic

Fig. 3. Diagram depicting the structure of the MSSM fitted to the time series of the waterfowl community wintering in Guadalquivir Marshes.

The graph depicts the flow of time, from left to right, and the flow of the hierarchy of effects, from the top to the bottom. In the upper part, the

sequential effects of the North Atlantic Oscillation during breeding (grey box) and wintering (white box) are linked to the vector of population

sizes both directly (black arrows) and indirectly through the local environmental effects (grey arrows). At the bottom, the vector for the observed

abundances (denoted by nk) and flooding values (ft) are linked to the community and hidden flooding processes through observation models,

respectively, while the population process vectors are linked across time through the community interaction matrix A (Levins 1968), containing

the intra- and interspecific effects (the a’s). Shown are the effects for a single time slice (time t).
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terms in a polynomial regression generally depends on the

range of the covariates, we fitted semi-parametric Bayesian

P-splines to the plots of waterfowl abundance vs. environ-

mental variables to visually inspect that our parametric

approach is correctly capturing the ‘nonlinearities’ of these

effects (see Fig. S2 in Appendix S1, Supporting information).

We did not fit P-splines in the MSSM because this made the

convergence highly unstable.

A matrix A can be derived from the above model contain-

ing the coefficients for interspecific interactions scaled by the

carrying capacities in the off-diagonal, ai,j ⁄ki, and the coeffi-

cients for intraspecific interactions, ai,i, normalized to 1 (1 ⁄ki)
in the main diagonal; this is the so-called community matrix

(Levins 1968). The vector et = (e1,t,…, eS,t)
T a represents the

effects of unexplained (latent) stochastic noise on the popula-

tion dynamics of species i and is sequentially independent

noise distributed according to amultivariate normal distribu-

tion, et � MVN(0,
P

t). The environmental matrix
P

t

includes the variance of the latent stochastic factors impact-

ing on single-species dynamics in the main diagonal (r2
n i;i), as

well as the covariance terms for the pairwise joint responses

to stochastic factors between all the pairs of species, r2
n i;j (for

i „ j), in the off-diagonal. The variance term r2
n i;i is thus the

population system error for each species i. A graphical depic-

tion of theMSSM is shown in Fig. 3.

The temporal variance displayed by the fluctuations in the

abundance of every species can be decomposed into the joint

contributions from biotic interactions and environmental

forcing; the former factor refers to the role of intra- and inter-

specific interactions, while the later component refers to

climatic and environmental variability, as well as other sto-

chastic forces impacting on the temporal dynamics (e.g.

Mutshinda, O’Hara & Woiwod 2011). It is straightforward

to calculate the proportion of the single-species temporal var-

iance in abundance attributable to every effect modelled

through the MSSM, in the same way as the variance compo-

nent estimation of a quantitative trait in genetics (Sorensen &

Gianola 2002). To assess the overall effect of the modelled

components at the community level, we estimate the total

community variance as the sum of the single-species variance

components. In Appendix S1, we derive the calculation of

these variance components.

OBSERVATION MODELS

Because we have two replicated samples for both flooding

extent and population abundance estimates, we can empiri-

cally estimate the observation error from the replicated nat-

ure of our survey in a fully identified model (see Dennis,

Ponciano& Taper 2010; Knape, Jonzén & Sköld 2011;Muts-

hinda, O’Hara & Woiwod 2011). We denote fTk = [fk,1,

fk,2,…, fk,T] as the sequence of estimates for flooding extent

derived from Landsat images for each k month and

yTi;k = [yi, k,0, yi, k,1,…, yi, k,T] as the log-transformed aerial

estimates of population abundances for each species i during

each replicated k census. We further considered the temporal

distribution of the observation errors to be potentially corre-

lated across species (Knape et al. 2009), so a non-diagonal

variance–covariance matrix Xt was implemented in the sam-

pling model for waterfowl counts; the measurement (obser-

vation) equations can thus be written as

fk;tjFt � NðFt þ ck; s
2
f Þ

yk;tjnt �MVNðnt þ bk;XtÞ
eqn 3

where ck is the correction factor for the average fluctuation

level of each flooding time series for each replicate sample k.

The two S · Tmatrix yk,t encompass the time series of water-

fowl counts recorded during each replicate census as columns

in two observation matrices, one for the December count

(y1,t) and the other for the January census (y2,t); these matri-

ces are jointly conditioned upon the S · T process state

matrix nt including the time series of latent population sizes

for each species as columns; bk = (b1,k,…,bS,k)
T are two

column vectors encompassing the correction factors for

the average fluctuation level of each replicate population

abundance time series for each species and replicate census.

To allow for identifiability, the correction factors for the

December replicate (c1 and bi,1) were set to 0, while the other

parameters were estimated freely. The term s2f is the observa-
tion error for flooding extent; the observation error matrix

Xt includes the error terms for the sampling variability of

single-species surveys in the main diagonal (s2i;i), as well as the
covariance terms for the temporally correlated observation

errors between all the pairs of species, s2i;j (for i „ j), in the

off-diagonal.

PRIOR SPECIF ICATION AND PARAMETER ESTIMATION

We used Bayesian Markov chain Monte Carlo (MCMC)

integration through Gibbs sampling (Gelman et al. 2004) to

fit the MSSM. To finish model specification, we placed

weakly informative priors on the unknown quantities in eqns

1–3. The location parameters were given flat normal distribu-

tions, that is, b0, k0, b1, k1, ci,Æ, ui,Æ, d i,Æ, ck, bi,k � N(0, 103).

The terms for intrinsic growth rates and carrying capacities

were also given flat normal distributions ri, ki � N(0, 103);

these distributions were truncated at 0 to account for the bio-

logical fact that an intrinsic growth rate must always be posi-

tive; additionally, while ki is supported in the entire real line,

a negative value for the ln-carrying capacity would indicate a

carrying capacity of<1 individual, which does notmake bio-

logical sense. For the scale parameters in eqns 1 (r2
r , r

2
F) and

3 (s2f ), standing for the process and observation errors respec-

tively, we placed uniform distributions on the standard devia-

tions, r2
r , r2

F, s2f � Unif(0, 5) (see Gelman 2006). The

covariancematrix for environmental noise (
P

t) and observa-

tion error (Xt) were modelled with inverse Wishart distribu-

tions,
P)1, Xt

)1 � Wishart (f, S), which are the conjugate

priors for the covariance matrix of multivariate normal dis-

tributions (Gelman et al. 2004). The number of degrees of

freedom, denoted by q, was set to the rank of the scale matrix

f, namely the number of species (S) which is the value

expressing the weakest prior information. Given that we

1118 P. Almaraz et al.

� 2012 TheAuthors. Journal of Animal Ecology� 2012 British Ecological Society, Journal of Animal Ecology, 81, 1113–1125



monitored 10 species, 90 interspecific interaction coefficients

need to be estimated. As many of them will probably be

around 0 because of the absence of a quantitative inter-

specific effect, we use Stochastic Search Variable Selection

(SSVS; George &McCulloch 1993) to automatically set these

coefficients close to 0 during the MCMC simulation, so that

model computation is not affected. We provide the rationale

and working of SSVSwithin our setting in Appendix S1.

We initiated the MCMC simulation scheme with three

chains with overdispersed initial values. Each chain was run

for 110 000 iterations. The first 80 000 steps were discarded

as a burn-in period. The following 30 000 iterations were

used to construct the posterior distributions of the MSSM.

The convergence of the MCMC simulation scheme was

assessed by visually inspecting the posterior trace of the

Markov chains and by estimating the cross-correlation

among the parameters and hidden states in the model

(Gelman et al. 2004). The goodness-of-fit of the MSSM was

evaluated by plotting the realized residuals in the MSSM vs.

the predicted hidden states and by constructing the quantile–

quantile plots (e.g. Gelman et al. 2004; Knape et al. 2009). In

Bayesian analysis, a realized residual is estimated from the

expected value of the hidden states and observations given

the data and the posterior parameter estimates. We used pos-

terior predictive checking (Gelman et al. 2004) to assess

whether the MSSM is capable of recovering the main pro-

cesses underlying the temporal fluctuations in flooding exten-

sion and waterfowl abundance from synthetic data sets

simulated from the fitted model (see Appendix S3 for further

details). We wrote the MSSM in the BUGS language

(Thomas et al. 2006), and the BRugs package (OpenBUGS

version 3.0.3) running on R 2.13.0 (R Development Core

Team 2011) was used to carry out the analyses. We give

a sample BUGS code implementing the MSSM in

Appendix S2.

ESTIMATING THE EFFECTS OF PARTIAL OBSERVABIL ITY

ON INFERENCE

Although the impact on ecological models of observation

error in population counts is well known (e.g. Dennis et al.

2006; Freckleton et al. 2006), the role of missing data on

ecological inference has seldom been explored (Clark &

Bjørnstad 2004). Recently, the availability of replicate counts

and the precise specification of the observation error distribu-

tion have been shown to be critical for an unbiased estima-

tion of ecological effects of biotic interactions (Dennis,

Ponciano & Taper 2010; Knape, Jonzén & Sköld 2011), but

little is known about the expected effects of missing data on

ecological time-series models, even though their negative

impacts on inference are known to be severe in some cases

(Nakagawa&Freckleton 2008; Boone, Ye& Smith 2009).

To address the effect of partial observability on parameter

estimation, we sequentially fitted alternative MSSMs to dif-

ferent sets of reconstructed data bases. First, we averaged the

replicate observations (sensu Knape, Jonzén & Sköld 2011)

for both waterfowl populations and flooding extent while

retaining the original pattern of missing data. Secondly, by

taking advantage of the Gibbs sampler as a data augmenta-

tion technique (Gelman et al. 2004; Boone, Ye & Smith

2009), we used the time series of rainfall variability to predict

the missing data in the replicate estimates of flooding exten-

sion through MCMC integration (see eqn 1). Through data

augmentation, specific parameters associated with probabil-

ity distributions (so-called augmented data) are added in the

model as surrogates for the missing values, so that the vari-

ability in these distributions provides the uncertainty emerg-

ing from the missing values. Suitably, the Gibbs sampler can

marginalize these distributions during posterior simulation

(see, e.g., Boone, Ye & Smith 2009). The pattern of missing

data in the replicated time series of waterfowl counts did not

have an appreciable effect on inference owing to the small

number of unavailable censuses, so we focus only on the

flooding data where the amount of missing data is larger (see

Fig. 1). This strategy resulted in six reconstructed data sets:

(i) two sets where no observation error is considered in water-

fowl counts, with and without missing data; (ii) two sets

where no observation error is considered in the estimates of

flooding extent, with and without missing data; and (iii) two

final sets where both waterfowl counts and flooding extent

were considered to bemeasuredwithout error, with andwith-

outmissing data. TheMSSMwas then fitted to this six recon-

structed data sets, and the resulting posterior estimates for

the variance components of biotic interactions and environ-

mental forcing were compared to the results with the original

data base where the patterns of both replicated observations

andmissing data were correctly specified.

Results

ASSESSING CONVERGENCE, GOODNESS-OF-F IT AND

MODEL ADEQUACY

There was no evidence for the non-convergence of the three

posterior Markov chains, which displayed a relatively good

mixing during the MCMC simulation (Figs S1 and S2 in

Appendix S3, Supporting information). The posterior corre-

lations between the terms in the full parameter vector, includ-

ing the hidden flooding states and latent population

abundances, were virtually 0 or very small overall (Fig. S3 in

Appendix S3, Supporting information). Interestingly, the

posterior autocorrelations in the MCMC estimation of the

dynamic states were nearly always close to 0 (see Fig. S3.1 in

Appendix S3, Supporting information). Finally, the posterior

cross-correlations between the linear and quadratic terms

estimating the climatic and environmental effects on commu-

nity abundance were virtually always close to 0, as were the

cross-correlations between the biotic interaction coefficients

and the system and observation error variances and covari-

ances (see Fig. S3.2 in Appendix S3, Supporting informa-

tion). The residuals of the MSSM were mostly uncorrelated

(r < 0Æ2) and displayed no systematic pattern with respect to

the predictions (Fig. S4 in Appendix S3, Supporting infor-

mation).With only small deviations in a few data points, they
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displayed a Gaussian shape across species and replicated

observed time series (Fig. S5 in Appendix S3, Supporting

information). Finally, both the process error matrix
P

t and

the observation error matrix Xt conformed to the multivari-

ate normality assumption (Shapiro–Wilks test,P > 0Æ05).
In Appendix S3, we provide the results of the posterior

predictive checking conducted with the MSSM. Even with as

few as 10 simulated data sets, our model is capable of captur-

ing the underlying ecological processes from the simulated

data to a large degree (Fig. S6 in Appendix S3, Supporting

information). In the majority of the cases, the average value

of the distribution of posterior parameters estimated with the

predicted data sets lies very close to the original sampling esti-

mates.

ENVIRONMENTAL AND STOCHASTIC COMMUNITY

DYNAMICS

Parameter estimates for the environmental component of the

MSSM are shown in Table S2.1 of Appendix S1 (Supporting

information). According to the correction factor for the aver-

age fluctuation in observed flooding level (ck), no systematic

sampling bias was detected in the observation model, but the

term for observation error (s2f ) was 2Æ37 times larger than the

term for process error (r2
f ). A moderate signal of the NAO is

evident on winter rainfall variability (21Æ8% of explained

variance), as well as a large impact of rainfall variability on

flooding extent (87Æ3% of explained variance; see Fig. 1).

Therefore, the downscaled effect of the NAO on hidden

flooding extent accounted for 19% of interannual variability

in local environmental conditions.

For eight of 10 species, the correction factor for the aver-

age fluctuation in observed abundance suggested no system-

atic sampling bias in the observation model (bi; Table S2.2 in

Appendix S1, Supporting information). Posterior estimates

for observation error variance were generally large, with

observation error being on average 1Æ26 times larger than

process error across species (Table S2.2 in Appendix S1,

Supporting information). Some 72Æ6% of the community

variance could be explained by environmental stochasticity

(41%) and large-scale climate plus local environmental

effects (31Æ6%; see Fig. 4a). Only 4Æ6% of this variance is

accounted for by interspecific interactions: the Bayes Factors

averaged 0Æ488 across the 90 modelled potential interactions,

which provide evidence against the inclusion of any interspe-

cific effect in the stochastic community dynamics model. The

remaining community variability (22Æ8%) could be ascribed

to intraspecific interactions; however, given the large

(a)

(b)

(c)

Fig. 4. Results of the fitting of theMSSM to the abundance time series of ten waterfowl species wintering inGuadalquivirMarshes. The bar plot

in (a) shows the amount of population variance in the time series for each species (in%) that is explained by the four major sources of variability

considered in the communitymodel: interspecific interactions, intraspecific interactions, climate variability and process variance. The bar plot in

(b) shows the amount of environmental variance in the dynamics of each species that is explained by linear (lin) and quadratic (quad) terms for

the flooding extent, the North Atlantic Oscillation (NAO) during breeding and the NAO during wintering. The figure in (c) shows the frequency

distribution of the posterior estimates for the temporal correlation in observation error (s2i;j, in white) and residual process error (r2
n i;j, in grey)

for each pair of species.
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mobility of waterfowl within the wintering period (see Dis-

cussion), this figure is likely an overestimate for some species.

The distribution of the correlation coefficients measuring the

residual interspecific synchrony in process error (r2
n i;j) and

the covariation in observation error (s2i;j) yielded average pos-

terior estimates of 0Æ20 and 0Æ12, respectively (Fig. 4c). A

model with uncorrelated observation errors yielded a worse

fit than the MSSM with correlated errors (DIC: 1591Æ7 vs.

1491Æ3, respectively).
Flooding extent of the study area during winter accounted

for 38Æ6% of the community variance, while the wintering

and breeding NAO index explained 33Æ6% and 27Æ9% of this

variability, respectively (Fig. 4b). The impact of flooding

extension was particularly important for diving ducks

(common and red-headed pochards; Fig. 4b, Table S2.3 in

Appendix S1, Supporting information); in contrast, the

NAO conditions during breeding and winter prevailed for

dabblers and particularly for the shelduck. The largest effect

size for the breeding NAO forcing of wintering abundance of

greylag goose and common shelduck was found at a 3-year

lag. Overall, 63% of the posterior estimates for linear terms

and 60%of the quadratic terms in theMSSMdid not overlap

with 0 (Table S2.3, Supporting information). Segregated

according to linear vs. nonlinear effects, 61Æ6% of the com-

munity variance was accounted for by the linear environmen-

tal terms in eqn 2, while 38Æ4% was ascribed to quadratic

terms. According to the sign of these environmental effects, 6

of 19 linear terms and 17 of 18 quadratic coefficients were

negative. This suggests essentially concave relationships

between environmental variables and wintering population

size, where the largest wintering population sizes are located

at approximately intermediate values of the environmental

drivers (see Fig. S2 in Appendix S1, Supporting informa-

tion).

IMPACT OF PARTIAL OBSERVABIL ITY ON MODEL

ESTIMATION

Accounting for missing information through data augmenta-

tion yielded a 50Æ9% increase in the estimated variance com-

ponent for climatic and environmental variability at the

community level (see Fig. S3a in Appendix S1, Supporting

information). These increases were most evident for the

diving ducks and the common teal. Accordingly, a sharp

decrease was observed in the estimated impact of environ-

mental stochasticity (42Æ9%) and interspecific interactions

(28Æ1%). These figures averaged 30Æ1%, 39Æ3% and 23Æ5%
across species, respectively (Fig. S4 inAppendix S1, Support-

ing information). This increase in the community variance

explained by environmental and climatic variability was

mainly attributable to a rise in the estimated effect of hidden

flooding extension (136Æ1%), which averaged 50Æ1% across

species; in particular, the magnitude of the quadratic terms

rose dramatically for nearly all species (Fig. S3b in Appendix

S1, Supporting information).

The effect of ignoring observation error and missing data

on estimates of biotic interactions was variable across

species, and no consistent pattern is found at the community

level (Fig. 5a). However, neglecting observation error had a

dramatic effect on variance component estimation for

environmental forcing and stochastic effects: on average,

environmental forcing is underestimated by 15Æ3% (maxi-

mum specific underestimation of 38Æ8%) and environmental

stochasticity overestimated by 14Æ1% (maximum overestima-

tion of 32%). Interestingly, the magnitude of intraspecific

interactions (density dependence) was overestimated by an

average 19Æ1% when observation error was neglected in the

time series of flooding extension, but not in the time series of

population abundance; in this latter case, observation error

(a)

(b)

Fig. 5. Effects of observation error and missing data on the estima-

tion of the variance components in the MSSM. The figure in (a)

shows the proportional difference (%, averaged across species) in the

estimation of the variance attributable to biotic interactions and envi-

ronmental variability between models ignoring observation error in

population abundance (ni,t), flooding time series (ft) and both (ni,t, ft),

and a model fully accounting for partial observability; the results are

shown for the original pattern of missing data (shades of blue) and

for a model accounting for missing information through data aug-

mentation (shades of red). On (b), these differences are shown segre-

gated for the three environmental variables modelled (North Atlantic

Oscillation (NAO) during breeding, NAOduringwinter and flooding

extent). A negative (positive) value in the difference for a given setting

and variance component suggests that the misspecification of the

structure of partial observability causes a decrease (increase) in the

estimated component for that setting. In the box-plot, the mean is

shown as a horizontal line, while the boxes span one standard error

and the whisker denotes the 90% confidence interval. The raw data

are the values of each variance component for every species

modelled.
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had no clear effect on the estimates of density dependence. In

general, the effects on variance component estimation of

accounting for missing information through data augmenta-

tion were weakened when observation error was sequentially

dropped from the analysis (Fig. 5a). Data augmentation did

increase the estimated variance component of climatic effects

and decreased the effect of environmental stochasticity even

when observation error was neglected, but these shifts were

of smaller magnitude relative to the case where observation

error is correctly specified (compare Fig. S3 in Appendix S1,

Supporting information with Fig. 5a).

When observation error is completely omitted from the

MSSM, the variance components for the three environ-

mental forcing variables are jointly underestimated (Fig. 5b):

an average 18Æ9% for the breedingNAO index (up to 58Æ9%);

21Æ4% for the wintering NAO index (up to 49Æ1%); and 9Æ9%
for the flooding extent (up to 34Æ3%). Remarkably, when the

observation error terms were alternatively dropped from the

MSSM, an opposing pattern emerges: neglecting observation

error in the waterfowl counts caused a large underestimation

of the variance components for large-scale climate forcing

(26Æ1% on average, up to 63Æ9%), but no effect is evident for

the local flooding effect. In contrast, neglecting observation

error in the estimation of flooding extent caused an underesti-

mation of spatial flooding effect (27Æ4% on average, up to

43%), but no clear effect is evident on the estimation of large-

scale climate forcing. Across species, the amount of bias in

the estimation of environmental effects when observation

error is neglected is greater the larger the estimated effect in

the correct MSSM (r = 0Æ64, P = 0Æ044, n = 10). Again,

the effect of data augmentation on variance component esti-

mation is weakened when observation error is neglected

(Fig. S3 in Appendix S1, Supporting information and Fig.

5b).

Discussion

The abundance of migratory species can be influenced by

conditions in the breeding grounds, the stop-over areas

and ⁄or the wintering quarters (Newton 2004; Sæther, Suther-

land & Engen 2004). Survival and fecundity are expected to

be positively affected by warm and wet springs in waterfowl

(Johnson, Nichols & Schwartz 1992), and supplies during

winter and migration have been shown to affect the body

condition and subsequent reproductive success on the breed-

ing grounds in several species (e.g. Nilsson & Persson 1994;

Bêty, Gauthier & Giroux 2003; Ward et al. 2005; Kéry,

Madsen & Lebreton 2006; Morrissette et al. 2010). Warm

and wet conditions are correlated with positives phases of the

NAO in northern Europe (Hurrell et al. 2003). Interestingly,

conditions during breeding, moulting and migration, as mea-

sured through the NAO index, impacted nonlinearly on the

long-term dynamics of most species. We suggest that lagged

climatic conditions might affect wintering waterfowl num-

bers through two mechanisms: (i) an increase in the propor-

tion of pairs breeding and ⁄or in the survival of young of the

year until arrival on wintering grounds (Johnson, Nichols &

Schwartz 1992; Newton 1998), which gives rise to a direct

numerical signal during winter. This mechanism seems to be

operating in the dabbling duck populations and the red-

crested pochard; and (ii) through a cohort effect, by which an

increase in body condition of ducklings raised with good

weather enhances subsequent productivity when recruited to

the breeding population (Almaraz & Amat 2004b). This lat-

ter effect has been found in other waterfowl populations

(Christensen 1999; Sedinger & Chelgren 2007) and usually

operates at the population level with a time-lag similar to the

age of first breeding (Almaraz & Amat 2004a). Nilsson, Pers-

son & Voslamber (1997) showed that the survival rates up to

fledging of young Scandinavian geese were larger for birds

feeding on more productive grasslands, and the productivity

of these ecosystems is known to be affected by the NAO (e.g.

Kettlewell et al. 2006). This suggests that the finding of a 3-

year lag in the impact of the NAO during breeding on the

abundance of greylag goose and common shelduck, which

usually start reproduction when 3 years old (Kampe-Persson

2002), might be the signature of a cohort effect operating in

the breeding grounds: geese and shelducks born and raised in

better climatic conditions (i.e. during positive NAO phases)

might be expected to survive in better body condition until

maturity (e.g. Bêty, Gauthier & Giroux 2003). Interestingly,

the quadratic terms measuring the lagged impact of the NAO

during breeding on wintering waterfowl abundance were

mostly negative, which indicates that during periods of extre-

mely favourable environmental conditions in the breeding

grounds, the abundance of subsequent wintering populations

declines.We suggest that during these warm and wet periods,

a fraction of the reproductive population remains in the

breeding grounds (see below), because these conditions in

northern Europe (positive NAO phases) are negatively corre-

lated with subsequent weather conditions in the Mediterra-

nean basin (Hurrell et al. 2003).

The impact of spatial flooding extent was proportionally

larger at the community level than the large-scale climate

forcing. Because diving ducks are more strongly dependent

on deep waters with open vegetation than dabbling ducks

(Murkin, Mukin & Ball 1997), it is not surprising that the

strongest effect of flooding on abundance was indeed found

in the red-crested and common pochards. Interestingly

enough, as with the large-scale climatic signals, a large por-

tion of the quadratic coefficients for the spatial flooding

effect were negative, which suggests that the magnitude of

environmental forcing on waterfowl abundance is depressed

when the conditions are either extremely wet or extremely

dry. We suggest that the mechanisms behind this pattern dif-

fer among species and with the spatio-temporal scale of the

effect. First, in the Guadalquivir Marshes, the greylag goose

feeds mainly on tubers of Scirpus spp. (Amat 1995), and only

secondarily on rice fields and grassland. However, when

water levels are too high, the accessibility of Scirpus tubers

drops, so the estimated negative effect of flooding extent on

population abundance might reflect the negative impact of

depressed Scirpus availability during extreme wet years. As

shown here, lagged good conditions in the breeding grounds
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produce an increase in the number of geese wintering in the

study area.When flooding extent is too high or too low, geese

are forced to abandon the National Park and winter in sub-

optimal habitats where food availability is lower and hunting

pressure is high (Calderón, Máñez & Garcı́a 1991; Nilsson

et al. 1999). During extreme climatic conditions, disturbance

levels for greylag goose are thus expected to be higher and

foraging conditions worse.

Secondly, positive phases of the NAO are correlated with

cold and dry wintering conditions in theMediterranean basin

(Hurrell et al. 2003; Almaraz & Amat 2004a). In our case,

this is reflected by the negative impact of the NAO index on

rainfall variability. Most dabbling ducks in Europe display a

large spatial mobility during winter in response to harsh (cold

and dry) weather conditions (Ridgill & Fox 1990). Therefore,

positive NAO phases most likely force migratory birds to

shift their wintering headquarters, and even their flyway

(Guillemain, Sadoul & Simon 2005) to areas with better con-

ditions; during these periods, most birds might thus remain

closer to their breeding grounds in Northern latitudes (Scott

& Rose 1996) and consequently depress local wintering pop-

ulations in the study area. In contrast, during extreme nega-

tive NAO phases, climatic conditions are optimal (warm and

wet) throughout the Mediterranean basin and southern Eur-

ope, and then migratory birds distribute throughout a wider

spatial area. Again, the net effect is a reduction in local win-

tering populations. Using neck-banded geese breeding in

Sweden, Nilsson & Persson (1994) showed that those birds

wintering in the Guadalquivir Marshes had a significantly

lower productivity than those wintering in the Netherlands,

and these differences have been attributed to migration costs

induced by rainfall variability in the Guadalquivir Marshes

(Nilsson et al. 1999). It is very likely that this mechanism

operates in other species as well, and it provides a link

between wintering conditions in the study area and subse-

quent breeding performance in northern Europe operating

through weather variability. Overall, these mechanisms pro-

vide a plausible explanation for the nonlinear climatic forcing

of waterfowl dynamics.

Accounting for partial observability is currently at the core

of time-series modelling research in ecology (de Valpine &

Hastings 2002; Clark & Bjørnstad 2004; Cressie et al. 2009).

In regression modelling approaches, it is known that mea-

surement error in the independent variable causes attenua-

tion in the estimated coefficient (i.e. the regression parameter

is biased towards 0; Carroll et al. 2006). The presence of

observation error in population counts is thus known to

introduce severe bias in the estimation of biotic interactions

(e.g. Dennis et al. 2006; Freckleton et al. 2006); in contrast,

the effects of measurement error in climatic covariates on the

statistical estimation of biological dynamics remain largely

unexplored. Remarkably, we have shown that a strategy

ignoring observation error in both environmental and popu-

lation survey data induces a coherent underestimation of

local environmental and large-scale climate effects on com-

munity-wide waterfowl abundance, as well as an overestima-

tion of environmental stochastic effects. The extent of

underestimation of environmental effects on population

dynamics was higher the larger the estimated effects on the

correct model. Lindén & Knape (2009) showed that the esti-

mation of environmental effects in population dynamics can

be biased in the presence of autocorrelation in the environ-

mental driver. However, we found no evidence of autocorre-

lation in either the NAO index or the flooding time series. It

is known that observation errors in the estimation of weather

and climate variability can be large (Hegerl, Jones & Barnett

2001), but this source of variance is usually neglected in eco-

logical time-series analyses. To our knowledge, our study

provides the first empirical example showing that modelling

observation error in the environmental component of an eco-

logical model can be proportionally more important than

modelling this source of variance in the biological component

(e.g. population size), as it jointly underestimates the biologi-

cal effects of environmental fluctuations and overestimates

the effects of density dependence. If our results are common

to other modelling approaches, this opens up the possibility

for a previously unappreciated source of uncertainty in

the estimation of ecological effects of climate change and

variability.

In conclusion, we have found that local-scale environmen-

tal fluctuations, driven by weather variability, were the major

factor impacting on the dynamics of a multispecies wintering

community migrating at a continental scale. In contrast to

previous suggestions (Stenseth et al.2003;Hallett et al.2004),

these results show that large-scale climate indices might not

always predict ecological processes better than local weather

(see also Almaraz &Amat 2004a; Knape & de Valpine 2011).

Additionally, few ecological examples of community-wide

nonlinear climate forcing currently exist. Deciphering the

functional form relating climate fluctuations to population

dynamics is not a trivial task (Sæther, Sutherland & Engen

2004; van de Pol et al. 2010). Future climate changes, operat-

ing through shifts in both the mean and variance of climatic

variables, can have unexpected effects on ecosystem behav-

iour if potential nonlinearities underlying the climate effects

ondemographyarenot correctly specified (e.g.Drake2005).
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