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1. INTRODUCTION

Winemaking is one of the oldest agricultural
activities, and is also one of the human enterprises
most closely tied to the natural environment (Unwin
2005, White et al. 2009). The wine style of a certain
area is the result of decades of grape variety selec-
tion in a fixed soil type under a baseline climate, the
so-called terroir (van Leeuwen et al. 2004, White

et al. 2009, Dougherty 2012). However, the inter-
annual variability of wine quality is mainly the
result of short-term climate variability, in particular
the average temperature during the winegrape
growing season. Recent studies have exploited this
fact to explore the effects of short-term weather
fluctuations on the inter-annual variability of wine-
grapes and wine quality at global (Jones et al.
2005), regional (e.g. Ashenfelter et al. 1995, Nemani
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et al. 2001, Storchmann 2005) and local scales
(Chevet et al. 2011). Other approaches aim at char-
acterizing the fine-scale structure of climatic condi-
tions within wine regions in order to determine the
suitability of different grape varieties (e.g. Hall &
Jones 2010, Santos et al. 2012). In either case, the
emergent consensus is that current climatic fluctua-
tions have a large impact on the multiple dimen-
sions of wine-making, from the organoleptic proper-
ties of the grapes to wine quality and prices (Mira
de Orduña 2010).

The rising quality of world wines during the last
decades has generally been attributed to the ob -
served increase in surface temperatures in most wine
regions (Jones et al. 2005). Hence, given the pre-
dicted increase in future planetary temperatures
(IPCC 2013), research on the projected effects of a
warming climate on viticulture has seen an upsurge
in recent years (White et al. 2006, Hannah et al. 2013,
Moriondo et al. 2013), paralleled by an exponential
increase in the global surface of planted vineyards
(Viers et al. 2013). The available projections of future
spatial shifts in suitability for winegrowing (Hannah
et al. 2013, Moriondo et al. 2013) rely on grapevine
maturity groupings (e.g. Jones 2006). These group-
ings specify the optimum growing-season tempera-
tures for each grape variety, and are ultimately based
on observed phenological requirements and on the
modeled impacts of climate fluctuations on wine
quality (Jones et al. 2005). However, the reliability of
this index has recently been questioned, as the aver-
age growing-season temperatures of many of the
wine regions are currently above the ranges pre-
dicted by available maturity groupings, with no
observed negative impacts on wine quality (van
Leeuwen et al. 2013). Although a major effect of
growing-season temperatures on inter-annual vari-
ability in wine quality is currently clear (e.g. Baciocco
et al. 2014), some wine experts (e.g. Parker 2003)
question the main role currently attributed to climate
in explaining the rising quality of world wines, and
identify the adaptive technological revolution experi-
enced in key wine regions during the last 50 yr as the
main factor explaining this increasing trend (Bisson
et al. 2002, Paul 2002, Unwin 2005). Here, adaptation
refers to the set of inter-related human factors that
potentially modify the relative effect of climate on
wine quality fluctuations through time, such as agri-
cultural innovations in the vineyard, technological
improvements in the cellar and increased reactivity
of the winemakers to changes in expert and con-
sumer preferences for certain wine styles (e.g. Bisson
et al. 2002, Paul 2002, Parker 2003, Unwin 2005,

Alston et al. 2011). Most of the available analyses
on the long-term impact of climate on winemaking
largely ignore the role that increasing adaptation
may have in modulating weather impacts on wine
quality (but see Haeger & Storchmann 2006, Alston
et al. 2011), an approach termed the ‘dumb farmer
scenario’ (Mendelsohn et al. 1994). The reason might
be that deriving a quantitative measure accounting
for the impact of adaptation on the weather/agricul-
ture interface is far from straightforward (Haeger &
Storchmann 2006, Alston et al. 2011), but the avail-
able historical narrative in fact provides a powerful
proxy for expected cut-points and trends in the rela-
tive effects of climate on agriculture evolution (see
Lamb 1995). In other words, although time-series
analyses are fundamentally pattern-oriented, histori-
cal adaptations may provide mechanistic clues for
ex plaining these patterns. In order to explore the
hypothesis of an increasing role of adaptations on the
temporal shift in wine quality fluctuations, we have
formulated a key set of specific questions. (1) Has the
effect of climate on wine quality varied in strength
across time? (2) If so, in which direction and by what
amount has it changed? (3) Can adaptations of the
wine industry explain this pattern?

Here, a time-varying coefficient modeling ap -
proach (Hastie & Tibshirani 1993) is developed to
address these questions in the evolution of wine
quality in Bordeaux, the most important wine region
in the world, throughout nearly a century. Through
this novel modeling scheme it is possible to partition
the temporal effects of temperature on wine quality
across sequential winegrape growing seasons.
Numerous studies have previously explored the rela-
tionships among Bordeaux growing-season weather,
wine quality and prices (e.g. Jones & Davis 2000,
Lecocq & Visser 2006, Ashenfelter 2008), and the his-
torical evolution of viticulture within this region is
very well documented (Paul 2002, Parker 2003,
Unwin 2005). In particular, a profound technological
revolution in both vineyard and cellar management
took place in this area from the 1960s onwards (Paul
2002), and some authors have recently suggested
that the relative impact of climate on winemaking in
Bordeaux might have changed as a consequence
(Chevet et al. 2011). Therefore, a specific prediction
of the adaptation hypothesis is a structural shift in the
effects of growing-season temperature on wine qual-
ity during the second half of the twentieth century,
with progressively weaker effects of temperature
across time. These results would have major implica-
tions for predicting the effects of future climate
change on winemaking in this area.
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2. DATA AND METHODS

2.1.  Wine quality and climate data

Wine quality can be defined as the average rating
assigned by wine experts to a vintage. Alternatively,
economists regard quality as the willingness-to-pay,
which is equivalent to the wine’s auction price. The
relationship between wine quality, vintage ratings
and prices is nevertheless rather complex for 2 main
reasons. Firstly, quality rankings by wine expert
raters can have disproportionate effects on prices
(Landon & Smith 1997, Jones & Storchmann 2001, Ne-
mani et al. 2001, Roberts & Reagans 2007), but the op-
posite does not commonly apply (Hadj Ali et al. 2008).
And secondly, given that the Bordeaux wine market is
currently an income stabilization agri-
cultural system, the prices of young
wines are inversely related to quantity
and hence largely decoupled from
quality (Ashenfelter 2008). For these
reasons, and given that consistent and
reliable data on Bordeaux wine prices
have not been readily available for the
last century, vintage ratings by wine
experts will be used here as surrogates
for wine quality (e.g. Jones et al. 2005,
Storchmann 2005, Roberts & Reagans
2007). Long-term data on red wine 
quality ratings comes from Tastet & 
Lawton (www.tastet-lawton. com), the 
oldest courtier firm in Bordeaux (Parker 
2003). Although vintage assessments 
from this firm are available from 1795, 
only data for the modern and contem-
poraneous era (1920 to 2009) were 
used. Vintage ratings are made on a 
numerical scale, bound between 0 
(worst quality) and 20 (highest quality), 
although a rating of 0 has never been 
given (Fig. 1a). This time-series is 
highly correlated with alternative vin-
tage ratings used by other authors (see 
Fig. 1b and Section S3, Tables S1–S3 
in Supplement 1 at www. int-res. com/ 
articles/ suppl/ c064 p187 _ supp/) and of-
fers the advantage of being one of the 
longest available datasets for Bordeaux. 
In any case, the results presented in 
this study are independent of the time-
series of wine quality ratings used.

Climatic data were obtained at the 
Bordeaux Airport, located in Mérignac

(44° 49’ 54” N, 0° 40’ 30” E; see Fig. S1 in Supplement
1). Daily temperature data from 1920 to 2009 were
gathered from the European Climate As sess ment &
Dataset project (Klein Tank et al. 2002), a team from
the Royal Nether lands Meteorological Institute
(KNMI; http:// climexp. knmi.nl/). Given that this sta-
tion is located within the Bordeaux city area, it might
be affected by the Urban Heat Island effect (Kalnay &
Cai 2003). To control for this, data for this weather
station covering the period 1951 to 2009 were down-
loaded from the Global Historical Climatological
Network (GHCN; www.ncdc.noaa. gov/ ghcnm/  v3.
php). This dataset was homogenized using the pair-
wise correlation method of Menne & Williams (2009),
which removes trends in temperature in duced by
changes in local land use and increasing urbaniza-
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Fig. 1. Time-series of wine quality ratings for Bordeaux red wines. (a) The
Tastet & Lawton series of vintage ratings is shown for the period from 1920 to
2009 (blue squares). To enhance multiannual fluctuations, a LOESS (locally
weighted scatter-plot smoother) function with a smoothing parameter of 0.2
(red line) was fitted to the observed vintage rating time-series. Dashed blue
lines around the trend show the 95% confidence interval of the estimated func-
tion, obtained through 10 000 bootstrap replications of the original data. (b)
Vintage quality ratings from 3 key wine experts: Robert Parker (1970 to 2009,
green triangles), Jeff Leve (1959 to 2009, yellow squares) and Tom Stevenson
(1967 to 2009, blue circles). The rating scales for Robert Parker’s and Jeff Leve’s
time-series are 50 to 100, for Tom Stevenson’s this scale is 0 to 100. The inset
shows an exponential function fitted to the regression of the coefficient of vari-
ation of the ensemble of annual wine ratings on the averaged rating obtained
from the 4 sources shown, after rescaling all the time-series to a 0 to 20 scale
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tion, among other biases. The final temperature data-
set used was thus reconstructed by merging the orig-
inal time-series from the KNMI (1920 to 1950) and
the homogenized data from the GHCN (1951 to
2009). This dataset is a homogenized update to the
gridded temperature dataset used by Jones et al.
(2005) (see Fig. S2 in Sup ple ment 1). The reliability
of this dataset was validated using 11 alternative
weather stations located within the Bordeaux wine
area (see Section S1 and Figs. S1 to S4 in Supplement
1). The average date of grape harvesting within the
Bordeaux wine area  during the study period was 22
 September (Daux et al. 2012), so tem-
perature data were averaged from
April to September to de rive a time-
series of growing-season tempera-
tures (Fig. 2a). The number of days
in which the average temperature
exceeded 30°C, as well as the aver-
age temperature of these days, was
also derived (Fig. 2b–c).

2.2. Modeling time-varying effects
of climate on wine quality

Previous studies on the effects of
climate on wine quality (e.g. Ashen-
felter et al. 1995, Jones et al. 2005,
Storchmann 2005, Webb et al. 2008)
have used a multiple regression
model, sometimes called an econo-
metric model (Jones & Storchmann
2001), where yearly wine quality
 ratings are regressed on growing-
season temperatures through linear
and possibly quadratic effects. This
model takes the general form:

(1)

where WRt stands for the wine quality
rating in year t, Yt stands for year t, Tt

and Tt
2 stand for the linear and quad-

ratic growing-season temperatures in
year t, I is the intercept, α is the tem-
poral trend of the wine quality series
and βl and βq represent the linear and
quadratic effects of temperature, re -
spectively. The term εt stands for sto-
chastic external effects, arising from a
set of independent and identically
distributed (i.i.d.) random variables
following a normal distribution of

mean 0 and process variance σ2, εt ~ N(0, σ2).
An implicit assumption of the standard eco no -

metric model, hereafter the constant model, is that
the effect of growing-season temperature on wine
quality is stationary, that is, there is no long-term
temporal variability in the climatic control of vintage
quality. This assumption can be relaxed in a straight-
forward manner through the use of a time-varying
coefficients (hereafter, TVC) specification (Hastie &
Tibshirani 1993). The model in Eq. (1) would now be
rewritten as:

(2)

2= +α + β + β + εWR I Y T Tt t l t q t t

, ,
2= α + β + β + εWR T Tt t l t t q t t t
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Fig. 2. Climatic fluctuations in Bordeaux, France, from 1920 to 2009. (a) Time-
series for the temporal evolution of homogenized winegrape growing-season
temperatures, averaged from April to September (blue dots). To enhance multi-
annual fluctuations a LOESS function with a smoothing parameter of 0.2 (red
line) was fitted to the observed temperature time-series. Dashed blue lines
around the trend show the 95% confidence interval of the estimated function,
obtained through 10 000 bootstrap replications of the original data. (b) The num-
ber of days in which the temperature was >30°C during each growing season
(orange diamonds). (c) The average temperature (°C) of these days (red squares)
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where the coefficients αt, βl,t, βq,t and σt now evolve
through time according to a given function. In princi-
ple, any function can be specified for the time-vary-
ing coefficients, such as a simple random walk, an
autoregressive model, or more complex functional
specifications (see Hastie & Tibshirani 1993, Fan &
Zhang 2000). Given that no previous information is
available, a simple random walk with drift was used
to provide the most parsimonious fit (e.g. West & Har-
rison 1997, Primiceri 2005). Specifically, the location
coefficients αt, βl,t, and βq,t were modeled as:

(3)

where parameter lx (x stands for α, βl, or βq) is the dif-
fusion (drift) coefficient of the random walk for each
time-varying coefficient, and εt stands for i.i.d. noise
with 0 mean and coefficient process variance ρx

2. The
random walk for the coefficient αt now models the
 time-varying, locally linear trend of the wine quality
time-series through changes in model intercepts.
Given the trends in wine ratings and temperature, the
variable Year does not appear here explicitly because
this made convergence to a posterior distribution less
 efficient. Hence, the TVC specification can model
the time evolution of the effect of temperature on
wine quality across sequential growing seasons (βl,t

and βq,t), along with the time-varying trend in wine
quality not ac counted for by temperature (αt). The
scale parameter σt, accounting for the time-varying
process standard deviation in wine quality ratings,
was also modeled as a linear random walk with drift
such that:

(4)

where the parameter lσ is the drift coefficient, and
εσ,t stand for i.i.d. noise with 0 mean and process
variance ρσ

2. This equation models the stochastic
volatility of wine ratings, which makes the devel-
oped TVC model analogous to the conditional het-
eroscedastic models commonly used in econometric
approaches (West & Harrison 1997). This is con-
venient because the time-series of wine quality
ratings displayed reduced variance across time
(see ‘Re sults’). Finally, a time-varying estimate for
the optimum growing-season temperature can be
ob tained by setting to 0 the partial derivative of
wine quality with respect to temperature (see
Jones et al. 2005).

2.3.  Accounting for uncertainty in wine quality ratings

Although wine expert ratings are fundamentally
subjective (Ashenfelter & Jones 2013), they are re -
lated to certain sensory characteristics of the wine
that reflect objective factors (Bisson et al. 2002), so
the cross-correlation between different sets of expert
ratings is usually very large (e.g. Jones et al. 2005,
Cardebat & Figuet 2013, Baciocco et al. 2014; see
Table S3 in Supplement 1). However, it is also known
that wine experts show low consistency in the ratings
of the same wines among rating sessions (e.g. Gawel
& Godden 2008, Hodgson 2009). This has led some
authors to suggest using combined ratings by a small
set of experts, which generally increases the consis-
tency of wine quality assessments (Gawel & Godden
2008). To date, no attempt has been made to account
for this rating uncertainty in the analyses of the long-
term climatic effects on wine quality. Here, an ob -
servation model accounting for this uncertainty will
be considered, of the form:

(5)

where WRobs,t denotes the rating assigned by Tastet &
Lawton for each vintage and year t (Fig. 1a). This ob-
servation is conditioned upon a latent (unobserved)
vintage rating, WRt (Eqs. 1 & 2) that represents the
consensus that would be obtained from a set of an
asymp totically large number of expert raters. Hence,
the observed rating for each year is regarded as
emerging from a normal distribution with the latent
vintage rating as the mean and an observation rating
variance of τt

2. A fundamental problem in time-series
analysis is the estimation of this variance (West &
Harrison 1997). Here, a time-varying estimate for τt

2

will be approximated from a set of alternative wine
quality ratings from 3 highly reputed wine experts
(Fig. 1b; see Section S3 and Table S3 in Supplement 1
for further details). Additionally, an alternative model
will be fitted accounting for within-season variance
in growing-season temp er atures (see Section S2 and
Fig. S5 in Supplement 1).

2.4.  Estimation of parameters and model adequacy

Parameter estimation (Eqs. 1−5) was performed
through Bayesian Markov Chain Monte Carlo inte-
gration using Hamiltonian Monte Carlo (HMC; Neal
2011, Gelman et al. 2013). In contrast to other com-
monly used simulation schemes, this method uses
physical system dynamics to derive future states in
the Markov chain, and not a probability distribution.

~ ( , )obs,
2τWR WR N WRt t t t

α = +α + ε
β = + β + ε
β = +β + ε

α − α

β − β

β − β

l

l

l

t t t

l t l t t

q t q t

l l

q q t

1 ,

, , 1 ,

, , 1 ,

1 ,σ = + σ + εσ − σlt t t
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This algorithm is thus much more efficient, and the 
convergence to a stationary posterior distribution is 
much faster (see Section S4 in Supplement 1). Note 
that the constant model in Eq. (1) is a nested case of 
the TVC model (Eqs. 2−4), where the process vari-
ances ρ2 and the drift coefficients lx are set to 0, and 
the coefficient α is specified as constant. The recently 
developed Watanabe/ Akaike (or widely applicable), 
information criterion (WAIC; Watanabe 2010) will be 
used to compare the performance of both models in 
terms of out-of-sample predictive fit (see Section S4 
in Supplement 1). Models minimizing this quantity 
provide a better posterior predictive fit. Posterior pre-
dictive checks (Gelman et al. 2013) were conducted 
through the correlation of the observed time-series of 
vintage ratings to an ensemble of time-series of vin-
tage ratings simulated from the posterior parameter 
and latent rating values. The constant and TVC mod-
els were written in the Stan C++ language (Stan De-
velopment Team 2014), which uses the No-U-Turn al-
gorithm for implementing HMC integration (Hoffman 
& Gelman 2013). Further details on model specifica-
tion, along with the dataset and the RStan code used to 
produce the results of this paper are given in Table S1 
and Section S4 of Supplement 1 and in Supplement 2 
at www. int-res. com/articles/ suppl/ c064 p187 _ supp/.

2.5.  Evaluating the performance of the TVC model 
through numerical experiments

Previous fits of the econometric model to world wine 
quality data suggest a general pattern of negative 
quadratic effects of temperature on vintage ratings 
(Jones et al. 2005). This suggests that, for most wine 
areas, the optimum temperature for producing wines 
of the highest quality is actually very close to the cur-
rently observed values. Given that in many wine 
areas growing-season temperatures have been rising 
steadily for the past few decades (Jones et al. 2005), 
this raises the possibility that a TVC model could de-
tect a shrinking temporal effect of temperature on 
wine quality even if no genuine statistical decoupling 
of both variables should exist. This might be due to 
the bounded nature of the vintage quality data: yearly 
vintage ratings have been very close to optimum in 
re cent times, so this reduced temporal variance would 
shrink the local regression parameters to 0 even if the 
absolute effect of temperature on wine quality were 
not to change. To rule out this pos si bility, 2 further 
analyses were conducted. Firstly, the TVC model was 
fitted to the detrended  time-series of wine quality rat-
ings and growing-season temperatures to check

whether the observed temporal trend towards higher
growing-season temperatures might be artificially
shrinking the variance in wine quality ratings. Sec-
ondly, a more robust numerical experiment was de-
signed. The posterior para meter estimates of the con-
stant and TVC models coupled to the original
temperature data were used to derive an ensemble of
30 synthetic time-series of vintage ratings from each
fitted model; these time-series were truncated to a 0 to
20 scale, as were the original Taste & Lawton data.
The TVC model (Eqs. 2−5) was then fitted to each of
these truncated, synthetic time-series using the same
procedure as above, and the plots of the time-varying
coefficients were compared to the original values
used to generate the synthetic data. If the reduced
temporal variance of vintage  ratings during recent
times is artificially shrinking the local regression pa-
rameters to 0, the TVC model fitted to the synthetic
ensemble would recover a time-varying pattern in the
effects of temperature on wine quality even if the un-
derlying model generating the data is a constant one
(Eq. 1). However, if the TVC model successfully re-
covers the original dynamics of both a constant model
and a TVC model, this would  suggest a genuine statis-
tical de coupling of wine quality from  temperature.

3. RESULTS

3.1.  Temporal trends in wine quality and climate

Fig. 1a depicts the temporal evolution of Bordeaux
wine quality according to Tastet & Lawton’s ratings
from 1920 to 2009. A weak trend towards higher
quality wines was detected through time (Spearman’s
rank-oder correlation, rS = 0.26, 10 000 bootstrapped p-
value, pboot = 0.01). Fig. 2a shows the temporal
evolution of the merged  growing-season temperatures
during the last 9 de cades. A consistent temporal trend
towards warmer temperatures was also evident in Bor-
deaux (rS = 0.49, pboot = 0.0001). This general trend was
also apparent in the time-series for the number of days
with average temperature >30°C during each growing
season (warmest years; Fig. 2b): 2003 and 1947 were
the years with the higher number of warm days. How-
ever, the years with the highest  average temperatures
were 1946 and 1975 (Fig. 2c).

3.2.  TVC regression of wine quality on
 temperature: model fitting and adequacy

Fig. 3 shows the plots of the time-varying coeffi-
cients assessing the fluctuating effects of growing-
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season temperature on wine quality from 1920 to
2009. The linear temperature effect displayed a clear
shift in this effect during the mid-1960s (Fig. 3a):
prior to this period, wine quality was under strong
climatic control (average βl,t = 0.680). After this
period, however, an exponential decline towards
marginal values became evident (average βl,t since
year 2000 = 0.267). This pattern was largely mim-
icked by the quadratic temperature effect (Fig. 3c),
since large non-linear effects of temperature during
the first decades monotonically approached 0 to -
wards the end of the series. These shifts amounted to
an 8-fold decline in the temporal effect of tempera-
ture on wine quality at the end of the time-series, as
measured by the proportion of explained variance in
wine quality fluctuations (R2; Fig. 3e). Interestingly,
the locally linear trend coefficient (Fig. 3b) did not
display a constant temporal trend in wine quality rat-
ings after controlling for the time-varying effects of
temperature, and the time-varying process variance
coefficient declined systematically through time
(Fig. 3d). This suggests that the observed positive
trend in wine quality ratings was most likely due to
reduced temporal variance in ratings rather than to
an increase in average vintage quality.

The posterior estimated time-varying optimum
growing-season temperatures displayed a pattern of
increasing estimation uncertainty across time (Fig. 3f);
the time-averaged estimate of the optimum tempera-
ture for producing wines of the highest quality was
>18.6°C (Table 1), but optimum temperatures >21°C

are currently feasible with a large posterior probabil-
ity (90%; Fig. 3f). Given that the time-varying quad-
ratic temperature coefficients were close to 0 during
recent times (Fig. 3c), these figures were highly con-
servative lower-bound estimates. Table 1 shows the
parameter estimates of the fitted models. The fitting
of the TVC model was better relative to the constant
model, according to the smaller out-of-sample pre-
dictive fit index of the former (WAIC; Table 1).

Fig. 4 shows plots of the posterior predictive checks
conducted with simulated time-series from the fitted
TVC and constant models. The average correlation
be tween the observed time-series of wine quality rat-
ings and the set of simulated time-series was larger
for the TVC model (0.58 ± 0.05, 1 SD) than for the
constant model (0.48 ± 0.06). In the TVC model, most
of the posterior simulated wine ratings tended to
cluster around the Y = X regression line, and only the
extreme lower values were slightly biased (Fig. 4a).
This was expected given the bounded nature of the
wine quality rating scale. In contrast, for the constant
model, the variability in many of the posterior simu-
lations of the ratings was generally large and values
tended to deviate from the Y = X line to a greater
extent (Fig. 4b). The fitting of the TVC model ac -
counting for within-season temperature variability
yielded qualitatively the same results relative to the
original model shown here; more over, the proportion
of variance in wine quality explained by temperature
increased by an average of 3.3% when the within-
season variance was taken into account (see Fig. S5
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Parameter Symbol    Model
           Constant Time-varying

Constant trend α 0.009 ± 0.078 −
Drift of locally linear trend lα − −0.002 ± 0.018
Process variance of locally linear trend −            0.020 ± 0.030
Linear temperature effect βl 0.607 ± 0.079 0.526 ± 0.128a

Drift of linear temperature effect −      −0.004 ± 0.014
Process variance for linear temperature effect − 0.011 ± 0.013
Quadratic temperature effect βq −0.189 ± 0.0520 −0.198 ± 0.103a

Drift of quadratic temperature effect −         0.004 ± 0.006
Process variance for quadratic temperature effect  − 0.002 ± 0.005
Process variance for wine rating evolution σ2 0.383 ± 0.063 0.367 ± 0.077a

Growing-season temperature optimum (°C) 18.767 ± 1.0020 18.606 ± 0.294a

Variance in wine quality explained by temperature R2 0.413 ± 0.130 0.362 ± 0.216a

Out-of-sample predictive fit WAIC 175.747 ± 13.1900 170.857 ± 11.175
Effective number of parameters Peff 7.971 ± 1.382  22.117 ± 1.8420

aQuantities for these parameters are time-averaged estimates, and are shown here only for comparison

2ρβq

βl q

2ρα

βl l
2ρβl

Table 1. Posterior parameter estimates (±SD) for the constant and time-varying coefficients models assessing the effects of
temperature on Bordeaux wine quality from 1920 to 2009, obtained through Bayesian Hamiltonian Monte Carlo integration. 

WAIC: Watanabe/Akaike information criterion
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in Supplement 1). Finally, model estimates were
quite robust to even unrealistically large levels of
wine rating uncertainty (Fig. S6 in Supplement 1).

3.3.  Performance of the TVC model

The results of the fitting of the TVC model to the
nonlinearly detrended time-series of growing-season
temperatures and wine quality ratings yielded essen-
tially the same results relative to the fitting of the
model to the raw time-series (Fig. S7 in Supplement
1). Fig. 5 shows the results of the numerical experi-
ments conducted with the TVC model. Even with as
few as 30 simulated time-series, the TVC model was
very successful in recovering the dynamics of the orig-
inal model used to produce the synthetic data. The lin-
ear time-varying temperature coefficient suggested
that the abrupt shift observed in the mid-1960s from a
strong climatic control of wine quality to marginal
 values was robust enough to recover the dynamics
(Fig. 5a), as was the drift in the quadratic co efficient
(Fig. 5b). The posterior predictive estimation of the
process variance was also successful, for both the TVC
(Fig. 5c) and constant models (Fig. 5f). Remarkably,
the TVC model was able to correctly identify as con-
stant the average fitting to the ensemble of synthetic

time-series emerging from a constant model, for both
linear (Fig. 5d) and quadratic coefficients (Fig. 5e).
These results suggest that the variance reduction in
wine quality ratings during the last de cades was
larger than ex pected from warming temperatures
alone. Thus, the modeled abrupt shift to wards mar-
ginal  temperature effects on wine quality (Fig. 3) was
most likely due to a genuine gradual statistical decou-
pling of both variables, and not to a modelling artifact.

4. DISCUSSION

This study revealed that a model accounting for a
time-varying effect of growing-season temperatures
on Bordeaux wine quality provides a better fit than
the previously used constant models (Jones et al.
2005). This finding is backed-up by numerical exper-
iments, which suggest that the observed reduction in
the inter-annual variability of Bordeaux wine quality
is larger than expected from warming temperatures
alone. An abrupt drop during the mid-1960s in the
linear control of wine quality by growing-season
temperatures was followed by an 8-fold decrease in
predictability of wine quality fluctuations within a
30 yr period. Changes in the non-linear effects of
temperature were largely monotonic, although a
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Fig. 4. Posterior predicted checks performed with (a) the time-varying coefficients model and (b) the constant regression
model, assessing the effects of temperature fluctuations on Bordeaux wine quality from 1920 to 2009. For each panel, the aver-
age (squares) and standard deviations (whiskers) of 1000 posterior-simulated time-series of wine quality ratings generated
from the fitted models are regressed against the original value. The diagonal line in each graph is the Y = X regression line.
The inset in each panel represents the frequency distribution of Pearson’s product-moment correlations between the original 

time-series of wine quality ratings and each of the 1000 posterior-predicted time-series
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locally accelerated change from strong quadratic
effects to marginal values was also found in the mid-
1960s. The average temperature of the warmest sea-
sons during the last 90 yr did not display a temporal
trend, and even the warmest seasons were found
prior to the 1980s. Overall, it is highly unlikely that
the structural change in the climatic control of Bor-
deaux wine quality across time is related to long-
term shifts in growing-season climate. Rather, these
results can be explained by a structural change in
viticulture, as suggested by the adaptive hypothesis.

Fundamental changes in the world wine industry
have taken place during the last decades, from tech-
nological shifts in the management of vineyards and
the production of wines to changes in consumer pref-
erences for certain wine styles (Bisson et al. 2002,
Paul 2002, Unwin 2005, Alston et al. 2011). A partic-
ularly dramatic change was the generalized use of
synthetic pesticides from the mid-1960s. This pre-
vented some of the worst vine diseases, such as phyl-
loxera or powdery mildew, from causing the massive
damage that was common during the first half of the
20th century (see Gale 2011). Additionally, during
the 1970s, the large-scale implementation of vine
grafting with disease-resistant rootstocks and clones
further decreased the effects of catastrophic weather
and disease outbreaks (Paul 2002). Some other mis-
cellaneous changes, such as vine pruning and crop
thinning to decrease crop yields and increase wine
quality, as well as the generalized implementation of
computer-controlled fermentation and wine aging,
took place from the 1960s onwards (Paul 2002,
Parker 2003). Interestingly, Chevet et al. (2011) also
found a shift in 1960 from large effects of tempera-
ture on yields to marginal values within a single wine
state in Bordeaux, and attributed this structural
change to the abovementioned factors . This pattern
is consistent with those in other winemaking regions.
For example, recent changes in sugar and acidity
levels in California wine grapes, and hence in per-
ceived wine quality, have been attributed to strategic
marketing decisions from winemakers, and only sec-
ondarily to temperature during the growing season
(Alston et al. 2011). Additionally, winemaking crafts-
manship, and even brand reputation, may explain a
large proportion of variation in the current prices of
American Pinot Noir wines (Haeger & Storchmann
2006). The results of the present paper further sug-
gest that future studies focused on the evolution of
wine quality might benefit from exploring the poten-
tial time-varying effects of climate. Moreover, the
explicit modeling of within-season temperature vari-
ability improved model estimation for Bordeaux wine

quality evolution, which suggests a novel approach
for increasing predictability in wine quality.

Global coupled models of future climatic dynamics
predict an average temperature increase of 2°C dur-
ing the winegrape growing season by 2050 for many
wine regions in Europe (IPCC 2013, Moriondo et al.
2013). These results are in agreement with the pro-
jected shifts in agroclimatic conditions in Europe,
which predict higher drought stress, increases in
average temperatures and a shortening of the active
growing season (Trnka et al. 2011). In general, the
predicted changes for viticulture include a poleward
displacement of most of the wine regions to new
areas and a decrease in suitability of most of the cur-
rent regions. For example, Moriondo et al. (2013)
predicted an average of 60% decrease in the suitable
area for winegrowing in Bordeaux by 2020, and even
more severe decreases in other regions. These re -
sults are in agreement with data by Hannah et al.
(2013), which further suggest that the planetary shifts
projected for wine regions might have severe nega-
tive impacts on environmental conservation (Viers et
al. 2013). A key assumption of these approaches is
that the empirical information used to derive the pro-
jected effects of climate change actually reflect the
optimum conditions for grape growing, in particular
the current bioclimatic zoning of wine regions (e.g.
Santos et al. 2012) and grapevine maturity groupings
(Jones 2006). The results of the present paper sug-
gest, however, that previous estimates for optimum
growing-season temperatures in Bordeaux (17.4°C;
Jones et al. 2005) have been underestimated. A tem-
perature range of 20 to 22°C, which is larger than the
values predicted by the worst-case emission scenario
for 2050 (IPCC 2013), might include optimum tem-
peratures for producing high-quality wines in Bor-
deaux, as suggested by the TVC model. Although
accurate estimation of these values is far from trivial,
these results agree with the observation made by van
Leeuwen et al. (2013) for some of the wine regions in
the world, suggesting that available maturity group-
ings may previously have underestimated the upper
values of the range of optimum temperatures.

In conclusion, the present study posits that the
adaptive shifts evidenced during the last decades in
the Bordeaux wine industry likely dampened the rel-
ative impact of climatic variability on wine quality by
shrinking its inter-annual variability. This suggests
that the effects of current growing-season tempera-
tures on wine quality have been overestimated in this
region. Given that these estimates usually provide
the baseline for projecting the effects of future cli-
mate change on viticulture, the present results show
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that these projections might be biased for Bordeaux.
However, caution should be taken. Although in the
absence of physiological modeling it is difficult to
assess the potential effects of changing climates on
grape chemistry (van Leeuwen et al. 2013), ripening
is indeed highly sensitive to exceedingly warm tem-
peratures, as they can disrupt the balance between
sugar and acidity levels and the quality and aging
potential of wines (Mira de Orduña 2010). In the
future, a persistent warming trend in growing-season
temperatures might force winemakers to implement
further adaptive changes in order to maintain high-
quality vintages, such as shifting to grape varieties
better adapted to warmer climates or even re-locat-
ing vines to more northern latitudes (e.g. Hannah et
al. 2013). Moreover, the predicted increase in the fre-
quency of extreme climatic events at mid-latitudes,
such as heat waves, droughts and floods (Meehl &
Tebaldi 2004, Schär et al. 2004, White et al. 2006,
IPCC 2013) may have dramatic effects on the produc-
tion and quality of single vintages not accounted for
by the time-varying effects of temperature on wine,
irrespective of its local magnitude.
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