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During the last two decades, several satellite algorithms have been proposed to retrieve

information about phytoplankton groups using ocean color data. One of these algorithms,

the so-called PHYSAT-Med, was developed specifically for the Mediterranean Sea due to

the optical peculiarities of this basin. The method allows the detection from ocean color

images of the dominant Mediterranean phytoplankton groups, namely nanoeukaryotes,

Prochlorococcus, Synechococcus, diatoms, coccolithophorids, and Phaeocystis-like

phytoplankton. Here, we present a new version of PHYSAT-Med applied to the Ocean

Colour—Climate Change Initiative (OC-CCI) database. The OC-CCI database consists of

a multi-sensor, global ocean-color product that merges observations from four different

sensors. This retuned version presents improvements with respect to the previous

version, as it increases the temporal range (since 1998), decreases the cloud cover,

improves the bias correction and a validation exercise was performed in the NW

Mediterranean Sea. In particular, the PHYSAT-Med version has been used here to

analyse the annual cycles of the major phytoplankton groups in the Mediterranean

Sea. Wavelet analyses were used to explore the spatial variability in dominance both

in the time and frequency domains in several Mediterranean sub-regions, such as

the Alboran Sea, Ligurian Sea, Northern Adriatic Sea, and Levantine basin. Results

extended the interpretation of previously detected patterns, indicating the dominance

of Synechococcus-like vs. prochlorophytes throughout the year at the basin level, and

the predominance of nanoeukaryotes during the winter months. Themethod successfully

reproduced the diatom blooms normally detected in the basin during the spring season

(March to April), especially in the Adriatic Sea. According to our results, the PHYSAT-Med

OC-CCI algorithm represents a useful tool for the spatio-temporal monitoring of dominant

phytoplankton groups in Mediterranean surface waters. The successful applications of

other regional ocean color algorithms to the OC-CCI database will give rise to extended

time series of phytoplankton functional types, with promising applications to the study of

long-term oceanographic trends in a global change context.
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INTRODUCTION

Since the launch of the Coastal Zone Color Scanner (CZCS) in
the late 1970s, ocean color remote sensing has deeply improved
our understanding of the ocean system by providing global
estimations of the surface chlorophyll concentration (Chla), a
parameter known to be a good proxy of phytoplankton biomass
(e.g., McClain, 2009). Marine phytoplankton are located at the
base of the marine food web (Chassot et al., 2010; and references
therein), play a major role in the global biogeochemical cycles
(Field et al., 1998) and participate actively in the regulation
of the global climate (Sabine et al., 2004). During the last 40
years, observations of regional-to-global Chla data have been
acquired by different ocean color sensors (IOCCG, 2012), such
as Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate
Resolution Imaging Spectroradiometer (MODIS), Medium-
Resolution Imaging Spectrometer (MERIS) and Visible Infrared
Imager Radiometer Suite (VIIRS). In order to extend the existing
time series beyond that provided by a single satellite sensor,
the European Space Agency (ESA) has recently generated the
Ocean Colour—Climate Change Initiative (OC-CCI), a multi-
sensor, global, ocean-color product mainly devoted to climate
research (Storm et al., 2013) that merges observations from four
different sensors: SeaWiFS, MODIS, MERIS, and VIIRS. As an
ESA-funded CCI project, the OC-CCI focuses specifically in
creating a consistent, error-characterized time-series of ocean-
color products, with a strong focus in climate-change studies
(Brewin et al., 2015). Remote-sensing reflectance (Rrs) data
from MODIS-Aqua and MERIS are then band-shifted to match
the wavelengths of SeaWiFS by using an in-water bio-optical
model (e.g., see Mélin and Sclep, 2015). The main reason behind
this choice is that SeaWiFS is widely considered as the highest
quality sensor with the best match to in situ observations, and
is commonly used in peer literature (Couto et al., 2016). This
dataset improves the bias correction, thus reducing the sensitivity
to medium-term changes and extending the method applicability
beyond the lifetime of SeaWiFS. As a result, the current OC-CCI
database allows for the examination of the spatial and temporal
variability of surface Chla since September 1997 (Couto et al.,
2016).

Even though remote sensing derived phytoplankton types
does not provide a full description of the marine ecosystem, its
spatio-temporal distribution (including phenology, Kostadinov
et al., 2017), and identification of key groups give powerful
insights on the dynamics of the marine food web and the ocean’s
role in climate regulation in the context of the global change
(Bracher et al., 2017). This relevance was early recognized by
Platt et al. (2006), who concluded that detection of phytoplankton
from remote sensing images was a major challenge in ocean
optics. Therefore, over the last decade, several remote sensing
algorithms have been developed to characterize the global
distribution patterns of phytoplankton functional types (PFT)
or size classes (PSC; e.g., Sathyendranath et al., 2004; Alvain
et al., 2005, 2008; Ciotti and Bricaud, 2006; Raitsos et al., 2008;
Aiken et al., 2009; Bracher et al., 2009; Brewin et al., 2010;
Kostadinov et al., 2010; Hirata et al., 2011; Uitz et al., 2012; see
recent summary in Table 2 in (Bracher et al., 2017 and Table 3 in

Mouw et al., 2017). A complete guide of the available approaches
can be found in Mouw et al. (2017). Some of these algorithms
are based on various spectral features, such as backscattering
(e.g., Kostadinov et al., 2010), absorption (e.g., Ciotti and
Bricaud, 2006; Bracher et al., 2009; Mouw and Yoder, 2010; Roy
et al., 2013) or a hybrid between absorption and backscattering
(Fujiwara et al., 2011). Other algorithms exploit second-order
anomalies of reflectance spectra (Alvain et al., 2005, 2008), which
is the case of the so-called PHYSAT that was first developed
at a global scale by Alvain et al. (2005, 2008). The PHYSAT
approach relies on the identification of specific signatures in
the normalized water leaving radiance (nLw) spectra measured
by an ocean color sensor (Alvain et al., 2005, 2008), thereby
enabling the identification of nanoeukaryotes, haptophytes
(a major component of the nanoflagellates), Synechococcus-
like cyanobacteria, diatoms, Prochlorococcus, Phaeocystis-like
phytoplankton, and coccolithophorids. The PHYSATmethod has
been successfully validated with phytoplankton in situ data and
extensively used by many authors (e.g., Bopp et al., 2005; Arnold
et al., 2010; D’Ovidio et al., 2010; Gorgues et al., 2010; Masotti
et al., 2010, 2011; Alvain et al., 2012, 2013; Belviso et al., 2012;
Demarcq et al., 2012; De Monte et al., 2013; Hashioka et al., 2013;
Ben Mustapha et al., 2014; Thyssen et al., 2015).

Navarro et al. (2014) later proposed a regionalized version
of the algorithm for the Mediterranean Sea (Figure 1),
the PHYSAT-Med, using the MODIS era (2002–2013)
for identification of nanoeukaryotes, Prochlorococcus,
Synechococcus-like cyanobacteria and diatoms, which was
compared with more than 3,000 high-performance liquid
chromatography (HPLC) in situ measurements (see Table 3 in
Navarro et al., 2014). The main utility of the PHYSAT-Med is that
it allows for the tracking of specific features of phytoplankton
community structure occurring in the basin, along with their
associated bio-optical relationships that are heavily affected
by continental inputs, such as desert dust events and rivers
discharge (Bricaud et al., 2002; Claustre et al., 2002; Alvain et al.,
2006; Loisel et al., 2011). Volpe et al. (2007) early suggested
that the unique phytoplankton assemblages of the basin could
alter its spectral signature, therefore being responsible for the
peculiar color of the Mediterranean. Due to these characteristics,
standard remote sensing approaches tend to either overestimate
or underestimate Chla levels in the Mediterranean. In fact,
Volpe et al. (2007) also showed that NASA SeaWiFS standard
chlorophyll products are affected by an uncertainty in the
order of 100%. Specific algorithms have been thus developed
to retrieve Chla in the region, namely DORMA-SeaWiFS
(D’Ortenzio et al., 2002), BRIC-SeaWiFS (Bricaud et al., 2002),
MedOC4-SeaWiFS (Volpe et al., 2007), MedOC3-MODIS
(Santoleri et al., 2008), and MedOC4ME-MERIS (Santoleri et al.,
2008).

Furthermore, these bio-optical characteristics of the basin
described above clearly indicate the necessity to use customized
algorithms to detect PFT or PSC in Mediterranean Sea. Recently,
Sammartino et al. (2015) described the temporal variability of
PSC in Mediterranean Sea using the model proposed by Brewin
et al. (2011). Di Cicco et al. (2017) presented a new regional
algorithm to identify simultaneously the contribution of each
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FIGURE 1 | Map of the Mediterranean Sea. Gray areas show the sub-regions selected in this study for a regional assessment: Alboran Sea (ALBS), Ligurian Sea

(LIGS), Northern Adriatic Sea (NADS), and Levantine basin (LEVB).

PSC and PFT group to the satellite estimates of total Chla
concentration in the basin.

The Mediterranean (Figure 1) is the largest inland ocean
basin on Earth, only connected to the rest of the world’s oceans
by the Strait of Gibraltar. It exhibits an oligotrophic regime
(Krom et al., 1991), notwithstanding relatively external high
inputs of essential nutrients (Ludwig et al., 2009; Huertas et al.,
2012; Powley et al., 2016). Nevertheless, local physical structures
generate convergences zones, which are reflected in the distinct
biogeochemical properties of the twoMediterranean sub-regions,
the Western and the Levantine. Thus, a notable decreasing
gradient in Chla concentration is detected from the west to the
east, which causes a significant longitudinal variation in primary
production (Turley et al., 2000; Uitz et al., 2012). This gradient in
oligotrophy is evidenced both by in situ measurements (Tanhua
et al., 2013) and satellite data (D’Ortenzio and Ribera d’Alcalá,
2009). However, the seasonal evolution of Chla distribution still
follows the typical succession of temperate regions, characterized
by a phytoplankton biomass increase in late winter/early spring,
a decrease during the summer season and a second smaller
phytoplankton bloom in autumn (Siokou-Frangou et al., 2010;
Sammartino et al., 2015).

Phytoplankton community structure in oligotrophic
areas throughout the world’s ocean is mainly composed by
picoplankton and ultraplankton (Li et al., 1983; Brunet et al.,
2006; Dandonneau et al., 2006). Nevertheless, the Mediterranean
phytoplankton communities structures reveals a considerable
variability over both temporal and spatial scales, and large
dissimilarities in phytoplankton assemblage composition along
with other microorganisms across the basin have been also
highlighted (Siokou-Frangou et al., 2010). Many studies have
pointed to the dominance of picoplankton as the fingerprint
of the Mediterranean Sea and its overriding oligotrophy, but
the occurrence of regional phytoplankton blooms cause the
coexistence of numerous microalgal groups (Siokou-Frangou
et al., 2010).

The satellite empirical model applied by Sammartino et al.
(2015) encompassed this unusual and complex community
structure in the Mediterranean Sea and allowed assessment of
the spatio-temporal variability of the three phytoplankton size
classes (micro-, nano-, and pico-plankton) during the entire
SeaWiFS era (1998–2010). Previously, Navarro et al. (2014) had
redefined the PHYSAT algorithm (Alvain et al., 2005, 2008) to
the Mediterranean Sea’s bio-optical characteristics to estimate
the dominant functional phytoplankton types (Prochlorococcus,
Synechococcus, diatoms, nanoeukaryotes, coccolithophorids, and
Phaeocystis-like) from the MODIS sensor. More recently, Di
Cicco et al. (2017) developed a new regional algorithm for
satellite biomass estimates of PSC and PFT in Mediterranean
Sea and assessed their accuracy with respect to global models,
improving the uncertainty and the spread of about one order of
magnitude for all phytoplankton classes.

Regarding the distribution of chlorophyll, low values (less 0.2
mg/m3) are found over vast areas of the basin, with the exception
of large blooms observed in late winter and early spring in the
North Western Mediterranean (Siokou-Frangou et al., 2010).
Mesoscale activity also increases the chlorophyll concentration
mainly in the Alboran Sea, Balearic-Catalan Sea, Adriatic Sea
and the South Eastern Levantine Sea, by about one order of
magnitude for all phytoplankton classes. In other coastal areas
close to major rives, such us the Po in the North Adriatic Sea,
the Rhone in Gulf of Lions and the Nile in the Levantine Sea,
and river discharge generates a large increase in chlorophyll levels
(Siokou-Frangou et al., 2010). In the eastern basin, the Chla
rarely exceeds 0.5 mg/m3, with minima as low as 0.003 mg/m3

(Siokou-Frangou et al., 2010). Low biomass values are generally
associated with the dominance of cyanobacteria, prochlorophytes
and picoplankton-sized flagellates (Siokou-Frangou et al., 2010
and references therein), and represents 59% of the total Chla and
65% of the primary production. However, nanoflagellates are the
dominant group in terms of cell numbers throughout most of
the year in the Mediterranean Sea. Finally, observed increases in
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Chla correlate with decreases in the contribution of picoplankton
and nanoplankton, and increases in diatom concentration during
February and March (Siokou-Frangou et al., 2010).

Bracher et al. (2017) recently highlighted the limited
applicability of global satellite algorithms to determine the
composition of phytoplankton at a regional scale as one of
the major gaps in satellite research. Accordingly, these authors
suggest a roadmap for future developments in regionally adapted
algorithms. The main goal of this paper is thus to bridge the gap
diagnosed by Bracher et al. (2017) by updating and improving
the original version of the PHYSAT-Med method (Navarro et al.,
2014) with the new OC-CCI database. Firstly, the advantages of
this new version are: (a) an increase in the temporal range (1997–
2015; (b) a decrease of the cloud cover due to the use of several
ocean color sensors; (c) an improvement in the bias correction,
thus reducing sensitivity to medium-term changes; and (d) the
validation of the temporal range in the NW Mediterranean Sea
using diagnostic pigments analysis (DPA, Vidussi et al., 2001).
Secondly, wavelet analysis is applied to the retuned version in
order to analyse the contributions of different temporal cycles of
dominance variability of the major phytoplankton groups in the
Mediterranean Sea.

MATERIALS AND METHODS

PHYSAT-Med OC-CCI Algorithm
The OC-CCI is a long-term, consistent and error-characterized
dataset generated from merged normalized remote-sensing
reflectance derived from four satellite sensors: SeaWiFS, MODIS,
MERIS, and VIIRS (Storm et al., 2013; Jackson et al., in press).
In this work, we have used OC-CCI v3.0, where more data have
been included (VIIRS and SeaWiFS LAC). In addition, the bias
correction has been improved, reducing sensitivity to medium-
term changes and extending the method to work beyond the
lifetime of SeaWiFS. Daily level 3 remote sensing reflectance
data (Rrs) at 412, 443, 490, 510, 555, and 670 nm and diffuse
attenuation coefficient (Kd490) were downloaded from the OC-
CCI website covering the period from January 1998 to December
2015 (Figure 2, step 1). These products were displayed on a
regular 4 km grid, with an equi-rectangular projection with
constant longitude and latitude steps. Error specification (RMSE
and bias) is based on comparison with match-up in situ data and
extrapolation to global scale ocean.

In a second step (Figure 2, step 2), the Chla concentration in
the Mediterranean Sea was calculated using a regional algorithm
(MedOC4, Mediterranean ocean color four-bands, Volpe et al.,
2007) developed for the basin for SeaWiFS bands (or CCI),

MedOC4− Chla = 10(0.4424 − 3.686R + 1.076R2 + 1.684R3 − 1.437R4)(1)

where

R = log10
[

MAX
(

Rrs443555 , Rrs
490
555 , Rrs

510
555

)]

(2)

This bio-optical algorithm is based on a fourth-power polynomial
regression between log-transformed Chla and log-transformed
maximum band ratio (MBR). It is known that using multiple

FIGURE 2 | Schematic view of steps of the PHYSAT-Med OC-CCI algorithm.

Rrs ratios decreases the noise-to-signal ratio, thereby enhancing
the algorithm’s performance (O’Reilly et al., 1998). The MedOC4
algorithm was calibrated on a representative open-water bio-
optical dataset collected in the Mediterranean Sea, and is the
best algorithm matching the requirement of unbiased satellite
orophyll estimates (Volpe et al., 2007; Santoleri et al., 2008).
At a global scale, the SeaWiFS algorithms have shown errors
in the range of <5% for radiances and <35% for chlorophyll
(Mueller and Austin, 1995; Gregg and Casey, 2004). The accuracy
limit for chlorophyll using these standard algorithms has been
shown to be unrealistic in Mediterranean Sea, yielding a severe
overestimation (>70% for chlorophyll <0.2 mg/m3; Volpe et al.,
2007, 2012).

At the third step (Figure 2), the Rrs was converted to nLw
using the nominal band solar irradiance (Fo, in mW cm−2

µm−1) for any specific spectral band (λ) of the SeaWiFS sensor
(Gregg et al., 1993; Thuillier et al., 2003).

nLw(λ) = Rrs (λ)* Fo(λ) (3)

During step 4 (Figure 2), a new Look-Up-Table (LUT, Figure 3
and Table 1 in Supplementary Material) of nLwref (λ, Chla) was
empirically generated for the Mediterranean Sea from a large
dataset of OC-CCI Chla and nLw pixels for all daily images
contained within the study period (January 1998 to December
2015). Turbid pixels (defined as nLw555>1.3 mW cm−2 mm−1

sr−1, Nezlin and DiGiacomo, 2005) were excluded in order to
minimize the impact of high-suspended matter loads. Briefly,
nLwref is calculated from nLw data, and the associated Chla
computed from theMedOC4 algorithm within the concentration
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FIGURE 3 | Look-Up-Table for PHYSAT-Med OC-CCI algorithm. Normalized

water-leaving radiance nLw as a function of wavelength for various

MedOC4-Chla concentration (color scale, in mg/m3) for the Mediterranean

Sea (excluding Black Sea) during the study period (January 1998–December

2015).

range between 0.01 and 10 mg/m3 (41 narrow intervals). This
figure is similar to the one used in the development of the
PHYSAT-Med algorithm (Navarro et al., 2014).

Once the new LUT (Figure 3, Table 1 in Supplementary
Material) for the Mediterranean Sea was calculated using
the regional MedOC4-Chla algorithm, the radiance anomalies
[Ra(λ), see Figure 3, step 5] were computed for all daily OC-
CCI wavelengths analyzed using Equation (4) for all available
wavelengths (412, 443, 490, 510, 555, and 670 nm). Ra(λ) is
an adimensional parameter independent of the Chla level, and
hence also independent of the biomass. Ra(λ) thus represents the
second order variation in nLw(λ) after removal of the first order
effect of the Chla variation (Alvain et al., 2005):

Ra(λ) =
nLw(λ)�

nLw
ref

(λ)
(4)

The analyses by Alvain et al. (2005) showed that for a
given Chla concentration, the particle scattering variability
explains the largest fraction of the remotely sensed Ra spectral
variability, especially when focusing on Ra magnitude changes.
The labellization step was performed using the thresholds of Ra
for each of the six phytoplankton groups examined in PHYSAT-
v2008 (see Table 5 in Alvain et al., 2008), which is specifically
set up for SeaWiFS channels. These thresholds were used to
process daily images to calculate daily PFTs map (Figure 3,
step 6). For a spectrum to be associated with one group, all
criteria must be fulfilled. Thresholds (Table 5 in Alvain et al.,
2008) were fixed in order to avoid any overlapping. Pixels
with nLw values that were not classified for any phytoplankton
groups were cataloged as “unidentified (unid.),” and this can
sum up a significant fraction (Navarro et al., 2014). PHYSAT-
Med retrieves the dominant group for a given satellite image

pixel (4 km) for Mediterranean Sea, where a given phytoplankton
group is the major contributor to the radiance anomaly. From
this database (near to 6,600 daily images), 10-day and monthly
maps of dominant phytoplankton groups were obtained by
calculating the phytoplankton group that was present more days
during the integration period (10-day or monthly, respectively)
at each geographical pixel, not including “unidentified” pixels.
To estimate the proportion of each phytoplankton group in the
entire basin and several Mediterranean sub-regions (Alboran
Sea, Ligurian Sea, Northern Adriatic Sea, and Levantine basin in
Figure 1, Bricaud et al., 2002), the number of the pixels of each
PFT during 10-day or 1 month was calculated for each area in
proportion to all the identified pixels, excluding the unidentified
pixels. The box plot figures were created usingMatlab R© software
(boxplot.m function), where the central mark corresponds to the
median, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considered
outliers, and outliers are plotted individually. These statistics
were calculated for each climatological month by considering all
the values obtained during a particular month for the whole data
series (from 1998 to 2015).

In situ Validation
In order to validate the PHYSAT-Med output, we have compared
the temporal variability of PFT obtained from remote sensing
algorithm with diagnostic pigments analysis (DPA, Vidussi et al.,
2001) obtained from HPLC in North-Western Mediterranean
Sea. A total of 5,400 samples were collected from the basin and
analyzed by HPLC (Figure 1). This dataset consisted of samples
from the DYFAMED (Dynamics of Atmospheric Fluxes in the
Mediterranean Sea) time series included in theMAREDAT global
database of HPLC (Peloquin et al., 2013) and the BOUSSOLE
(Buoy for the acquisition of a Long-Term Optical Time Series)
program (i.e., Antoine et al., 2006). Details of HPLC methods
used can be found in the aforementioned references. Here,
we only considered samples limited to the first optical depth
(Z90), which reduces the number of available pigment inventories
to 1,615 samples and comprising the temporal range analyzed
(1998–2015). The first optical depth was calculated using daily
Kd490 images fromOC-CCI data [Z90 = 1/Kd490], which is about
15–35m on average in the Mediterranean Sea (D’Ortenzio and
Ribera d’Alcalá, 2009). The OC-CCI Kd490 product is computed
from the inherent optical properties (IOPs) at 490 nm (Lee et al.,
2005; Grant et al., 2016).

This comparison is based on many pigments specific to
individual phytoplankton taxa or groups (i.e., Gieskes et al., 1988;
Goericke and Repeta, 1993; Claustre and Marty, 1995; Jeffrey
and Vesk, 1997). For instance, Divinyl Chlorophyll-a (dChla)
is a typical marker of prochlorophytes (Goericke and Repeta,
1992; Claustre and Marty, 1995; Vidussi et al., 2001), whereas
zeaxanthin (Zeax) is associated with cyanobacteria (Guillard
et al., 1985). Fucoxanthin (Fuco) pigment is the principal marker
of diatoms (Jeffrey, 1980). For nanoplankton cuantification,
Vidussi et al. (2001) used three diagnostic pigments: alloxanthin
(Allox), that is a pigment typical of the cryptomonads (Gieskes
and Kraay, 1983); 19′-hexanoyloxyfucoxanthin (HexFuco),
whose concentration is related to prymnesiophytes and
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chromophytes nanoflagellates (Wright and Jeffrey, 1987); and
19′-butanoyloxyfucoxanthin (ButFuco), a typical marker of
chromophytes nanoflagellates (Wright and Jeffrey, 1987). Other
pigments used in this method are total chlorophyll-b (TChlb,
chlorophyll b + Divinyl-Chlorophyll b) and peridinin (Perid),
which appears in small dinoflagellates (Jeffrey and Hallegraeff,
1987). This approach has been used at global scale (Uitz et al.,
2006) and particularly in the Mediterranean Sea (i.e., Vidussi
et al., 2001; Marty et al., 2002; Sammartino et al., 2015; Di Cicco
et al., 2017; Mayot et al., 2017).

In this study, we have compared the in situ chlorophyll
concentration of nanoplankton and diatoms using the method
recently applied to the Mediterranean Sea by Di Cicco et al.
(2017). Following the DPA procedure, originally proposed by
Vidussi et al. (2001) and later refined by Uitz et al. (2006) to scale
diagnostic pigments to Chla, it is possible to apply DPA-based
approaches to satellite-derived Chla:

Chladiatoms =

(

1.60 [Fuco]

6DPW

)

x Chla (5)

Chlanano =

(

1.18 [HexFuco]+ 0.57 [ButFuco]+ 2.70
[

Allo
]

6DPW

)

x Chla if TChla > 0.08mg/m3 (6)

Chlanano =









12.5 [TChla]
+1.18 [HexFuco]+ 0.57 [ButFuco]+ 2.70

[

Allo
]

6DPW









x Chla if TChla < 0.08mg/m3 (7)

where

6DPW = 1.18 [HexFuco]+ 0.57 [ButFuco]+ 2.70
[

Allo
]

+ 1.67
[

Perid
]

+ 1. 60 [Fuco]+ 0.88
[

TChlb
]

+ 1.79 [Zeax] (8)

Alternatively, the method described by Alvain et al. (2005) was
used to compare Prochlorococcus and Synechococcus time series,
as this method uses the pigment ratio of divinyl-Chla and
zeaxanthin, respectively, and has been applied previously for the
Mediterranean Sea (Navarro et al., 2014):

Prel =
P�(Chla + dChla) (9)

where P is the measured pigment concentration (dChla or
zeaxhantin), and Chla and dChla are the concentrations of
chlorophyll-a and divinyl Chlorophyll-a, respectively.

As HPLC and PHYSAT-Med OC-CCI output data are
measured in different units, we used Spearman’s rank-order
(non-parametric) correlations to assess the strength of the
temporal association between both variables for each of the
phytoplankton functional types. We used 10,000 bootstrap
samples to construct 90% empirical confidence intervals for the
correlations (Efron and Tibshirani, 1993). In order to check for
possible time lags between the timing of seasonal blooms within
the Ligurian Sea, as measured with both methods, we inspected
the effect of different time lags in both variables on the strength
of the association.

Wavelet Analysis
Wavelet analysis has emerged as a tool for characterizing
periodicities in non-stationary time series, as it decomposes a
time series both in the frequency and time domains (Percival
and Walden, 2000). In this study, wavelet analysis has been
used to characterize the different periodic components of the
variability in dominance of the major phytoplankton groups in
the Mediterranean Sea across time. Wavelet analysis performs
a time-scale decomposition of the signal by estimating its
frequency characteristics as a function of time (Torrence and
Compo, 1998; Grinsted et al., 2004; Winder and Cloern, 2010).
In order to normalize time series data and obtain the wavelet
power spectrum of the different phytoplankton groups, the
continuous Morlet wavelet transform was applied by using the
Matlab R© toolbox provided by Torrence and Compo (1998)
and Grinsted et al. (2004) (http://atoc.Colorado.edu/research/
wavelets/). The wavelet power spectrum identifies the periods
that are the most important sources of variability across time.
Additionally, it is possible to define a global wavelet spectrum,
which identifies the variance associated to each period for a
given time series, and is similar to Fourier spectra (Percival and
Walden, 2000). Wavelet analysis was performed over the 10-day
times series of nanoeukaryotes, Prochlorococcus, Synechococcus-
like cyanobacteria and diatoms for the entire Mediterranean Sea
and for four selected sub-regions (Alboran Sea, Liguarian Sea,
Northern Adriatic Sea and Levantine sea).

RESULTS AND DISCUSSION

Validation
Figure 4 shows the temporal variability of several diagnostic
pigments and PFT in the Ligurian Sea, where DYFAMED and
BOUSSOLE sampling stations are located. The comparison
exercise covers all range of the PFT analyzed, except for
zeaxanthin pigment for which there were no values during 1998.
Prochlorococcus showed maximum values in autumn over several
years, at the end of the stratification period (Figure 4A). The
maxima found by the PHYSAT-Med OC-CCI algorithm were
in close agreement with the maxima in the concentrations of
the pigment ratio for dChla measured by HPLC method, which
is indicative of prochlorophytes (Goericke and Repeta, 1992;
Claustre and Marty, 1995; Vidussi et al., 2001). These results
agree with the pattern reported by Vaulot et al. (1990) and
Marty et al. (2002) estimated by flow cytometry and HPLC
analysis, respectively. During summer, also coinciding with the
stratification period, the dominant group is Synechococcus, and
a maximum in zeaxanthin concentration is observed across the
basin all years (Figure 4B). This pigment is associated with
cyanobacteria (Guillard et al., 1985) and has been widely used
to estimate Synechococcus concentration in the Ligurian Sea
(Vidussi et al., 2001; Marty et al., 2002). However, during the
spring bloom period, when the mixed layer depth is at its
maximum (Marty et al., 2002), the diatom group and diatom
Chla concentration also reached its highest value (Figure 4C).
Finally, the nanoeukaryotes distribution presented maxima
during winter, normally around January, coinciding with the
maximum of nanoplankton chlorophyll concentration estimated
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FIGURE 4 | Temporal percentage (10-day) of each PFT (black bars, left axis) and diagnostic pigments (DYFAMED–red dots and BOUSSOLE–green dots, right axis) in

the Ligurian Sea. (A) Prochlorococcus and Divinyl-Chla. (B) Synechococcus and zeaxanthin. (C) Diatoms and Chladiatom. (C) Nanoeucaryotes and Chlanano.

using Equations 6 and 7 (Figure 4D; Di Cicco et al., 2017).
Overall, the broad coincidence between PHYSAT-Med outputs
and HPLC pigments in the temporal pattern suggests that the
new version of PHYSAT-Med algorithm using OC-CCI v3.0
database is in agreement with the results obtained through long-
term monitoring programs for phytoplankton distribution, at
least in the Ligurian Sea area.

Even though the OC-CCI database provided per-pixel errors
(RMSE and bias) for all OC-CCI products, this approach is not
so common in retrieving phytoplankton functional types, except
for the recent works published by Brewin et al. (2017) and Di
Cicco et al. (2017) for the Mediterranean Sea. In fact, Di Cicco
et al. (2017) showed the improvements obtained from the use
of regional models with respect to the global models, with the
reduction of bias being of about one order of magnitude. As we
described above, the PHYSAT algorithm allows for the detection
of dominant PFT. This approach is based on the analysis of
the second order variation in nLw measurements after removal
of the impact of Chla variation. Alvain et al. (2012) found
acceptable results for diatoms (73%) and nanoeucaryotes (82%),
but relatively low for Prochlorococcus and cyanobacteria (61 and

57% of successful identification, respectively). For PHYSAT-Med,
Navarro et al. (2014) found similar results for Synechococcus and
nanoeucaryotes (61 and 74%, respectively).

Table 1 shows the results of the validation exercise. For
both nanoeucaryotes and diatoms the correlation between the
PHYSAT-Med OC-CCI and the HPLC data is relatively large,
with narrow bootstrapped confidence intervals non-overlapping
0. For Synechococcus the correlation is weaker but, again,
the confidence interval does not contain 0. In contrast, for
Prochlorococcus the association between PHYSAT-Med and
HPLC data is weaker, and now the 0 is included within the
confidence interval. In this later case, the sample size is clearly
lower. The reason might be that the largest Prochlorococcus
abundance is located near the deep chlorophyll maximum,
deeper than the first optical depth (Siokou-Frangou et al., 2010).

Spatio-Temporal Patterns at the Basin
Scale
Figure 5 shows the monthly climatology (1998–2015) of the
dominant phytoplankton groups in the Mediterranean Sea
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TABLE 1 | Validation results of the PHYSAT-Med dataset with HPLC data from the

Ligurian Sea.

Functional type Sample size rs 90% B.C.I.

Nanoeucaryotes 231 0.426 0.339 – 0.509

Diatoms 228 0.397 0.299 – 0.491

Synechococcus 234 0.112 0.019 – 0.204

Prochlorococcus 115 −0.133 −0.272 – 0.008

Shown are the sample size of the time series used, the Spearman’s rank-order correlation
between both time series (rs) and the 90% bootstrapped confidence interval. 10,000
bootstrapped samples of the original series were used to construct the intervals.

obtained with the OC-CCI database. These patterns are similar
to those obtained by Navarro et al. (2014) using the PHYSAT-
Med and the MODIS imagery for the period comprised from
July 2002 to May 2013. In addition, the analysis of the
PFT is consistent with the previous knowledge of this area
(Siokou-Frangou et al., 2010; Uitz et al., 2012; Sammartino
et al., 2015; Di Cicco et al., 2017). It is evident that
Synechococcus is the most abundant group detected at the
basin scale and particularly during spring-summer months,
whereas nanoeukaryotes seem to dominate during autumn-
winter months. Prochlorococcus is preferentially distinguished
during February and October in offshore waters, in opposition
to diatoms that prevail in coastal areas, such as the Gulf
of Lions, the Ligurian Sea and the northern Adriatic Sea,
and mostly during the spring season. This last finding agrees
with the microplankton distribution provided by Sammartino
et al. (2015) and Di Cicco et al. (2017) who concluded
that the fraction of microplankton significantly increases in
the Northwestern Mediterranean Sea, reaching values from
30 to 57% (Sammartino et al., 2015). The presence of
coccolithophorids in the basin is particularly evident along the
Mediterranean coastline and particularly in the surroundings
of the large river mouths (Ebro, Rhone and Nile) and in the
Adriatic Sea (Figure 5). However, it is worthy to highlight that
fluvial inputs of terrestrial matter or suspended solids may
slightly mask the signals and affect phytoplankton distribution
(Navarro et al., 2014). Even though PHYSAT-Med is also
appropriate for detecting Phaeocyctis-like phytoplankton, no
signal of this group was found in the current study. These spatio-
temporal patterns were subsequently corroborated by the time
series of monthly climatology (Figures 6B, 7B, 8B, and 9B)
although only nanoeukaryotes, Prochlorococcus, Synechococcus-
like cyanobacteria and diatoms were considered because
these groups were compared with in situ pigment markers
(Figure 4).

The abundance of nanoeukaryotes in the Mediterranean Sea
(Figure 6A) follows recurrent 12-months cycles across time,
as suggested by the power of the wavelet spectrum at this
cycle (Figure 6C). Some weaker 6-months cyclic components
can be observed during certain particular years (2003, 2006–
2014). The mean annual cycle or the monthly climatology
for this group (Figure 6B) showed a maximum percentage
of abundance during the winter months, mainly November,
December and January. The global wavelet spectrum (Figure 6D)

demonstrated that the 12-months periodicity was highly
significant, with a minor peak at 6-months also contributing
to the variance. The amplitude of the seasonal variations of
nanoeukaryotes at a basin scale is similar to that described
by Sammartino et al. (2015) and Di Cicco et al. (2017),
who found minimum values of abundance for nanoplankton
during summer and maximum during winter, when the mixed
layer depth (MLD) is also deeper (Siokou-Frangou et al.,
2010). In the Levantine basin this group was the second most
abundant in terms of Chla, but it was the main group in
the western basin (Di Cicco et al., 2017). Nanoplankton make
a dominant contribution (up to 43–50%) to total primary
production throughout the year at the basin scale (Uitz et al.,
2012).

For Synechococcus the wavelet power spectrum also revealed a
persistent 12-months periodicity (Figures 7C,D), with virtually
no secondary 6-months cycles. The higher percentages of
Synechococcus abundance were effectively observed during the
summer season (Figures 4, 5, and 7B), particularly in June and
July, coinciding with the stratification period (Siokou-Frangou
et al., 2010).

Interestingly, the temporal patterns of Prochlorococcus
(Figure 8A) exhibited a less periodic fluctuation in dominance
at the basin scale as compared to those of Synechococcus
(Figure 7A).The continuous wavelet spectrum (Figures 8B,C)
suggests that prior to 2002, no cyclic component dominated
(the time series conformed to a white-noise process). From
this year onwards, a 6-months periodicity pattern became
apparent, particularly from 2007. An annual cycle also
appeared during this period, but the power was smaller
as suggested by the global wavelet spectrum (Figure 8D).
This indicates that most of the temporal variance in the
dominance of Prochlorococcus in the Mediterranean Sea occurs
at different periodicities, perhaps dominated by a seasonal
period. Synechococcus tends to be more abundant at the surface
waters, whereas Prochlorococcus thrives mainly in the deep-
chlorophyll maximum (Marty and Chiavérini, 2002; Casotti
et al., 2003).

The temporal patterns of diatoms were characterized by a
robust periodicity of 12 months across time (Figure 9). In this
case, the largest dominance was observed during spring, in
agreement with the diatom blooms reported in the basin over
this season (Marty and Chiavérini, 2002). In contrast, the minima
occurred in September, coinciding with nutrient exhaustion.

Spatio-Temporal Patterns at the
Sub-Regional Scale
The PHYSAT-MedOC-CCI approach was also applied in four
selected sub-regions in order to track the temporal evolution
of phytoplankton groups at smaller spatial scales. To allow
for meaningful comparisons, the chosen areas resemble those
considered by Sammartino et al. (2015): the Alboran Sea, the
Ligurian Sea, the North Adriatic Sea and the Levantine basin
(Figure 1). Figure 10 shows the monthly climatology in the
percentage of dominance of the four phytoplankton groups for
each sub-region. Nanoeukaryotes occurrence exhibited a marked
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FIGURE 5 | Monthly climatology of the dominant phytoplankton groups detected by PHYSAT-Med OC-CCI during the study period (January 1998–December 2015).

FIGURE 6 | Temporal patterns of variability for nanoeukaryotes for Mediterranean Sea. (A) Temporal percentage (10-day) of nanoeukaryotes. (B) Box plot (red lines

stand for the median, blue box spans from the first to the second quartiles, and black lines represent 5th and 95th percentiles, respectively) of monthly climatology of

nanoeukaryotes. (C) Continuous wavelet power spectrum for the 10-day time series. Red line indicates the cone of influence, and is the region affected by the edges

of the data and should not be considered. (D) Global wavelet spectrum for the 10-day time series.

longitudinal gradient, with a higher abundance in the western
basin (Alboran Sea and Ligurian Sea) in relation to the Levantine
basin. Nonetheless, a marked annual cycle is evident in all
sub-regions, which is characterized by the presence of maxima

over the winter months and a minimum in summer. This was
confirmed by a regional wavelet analysis that clearly revealed
a consistent 12-month periodicity (Figure 11). Interestingly
however, a longitudinal increase in the importance of 6-months
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FIGURE 7 | Temporal patterns of variability for Synechococcus for Mediterranean Sea. (A) Temporal percentage (10-day) of Synechococcus. (B) Box plot (red lines

stand for the median, blue box spans from the first to the second quartiles, and black lines represent 5th and 95th percentiles, respectively) of monthly climatology of

Synechococcus. (C) Continuous wavelet power spectrum for the 10-day time series. Red line indicates the cone of influence, and is the region affected by the edges

of the data and should not be considered. (D) Global wavelet spectrum for the 10-day time series.

FIGURE 8 | Temporal patterns of variability for Prochlorococcus for Mediterranean Sea. (A) Temporal percentage (10-day) of Prochlorococcus. (B) Box plot (red lines

stand for the median, blue box spans from the first to the second quartiles, and black lines represent 5th and 95th percentiles, respectively) of monthly climatology of

Prochlorococcus. (C) Continuous wavelet power spectrum for the 10-day time series. Red line indicates the cone of influence, and is the region affected by the edges

of the data and should not be considered. (D) Global wavelet spectrum for the 10-day time series.
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FIGURE 9 | Temporal patterns of variability for diatoms for Mediterranean Sea. (A) Temporal percentage (10-day) of diatoms. (B) Box plot (red lines stand for the

median, blue box spans from the first to the second quartiles, and black lines represent 5th and 95th percentiles, respectively) of monthly climatology of diatoms. (C)

Continuous wavelet power spectrum for the 10-day time series. Red line indicates the cone of influence, and is the region affected by the edges of the data and

should not be considered. (D) Global wavelet spectrum for the 10-day time series.

periodicities also became apparent: both in the North Adriatic
Sea and in the Levantine basin, recurrent seasonal periods
contribute to the overall variability (Figure 11). Nevertheless,
the overall abundance of this group kept values above 20%,
with the exception of the Levantine basin over summer months.
This temporal pattern resembles that of nanoplankton found
in the selected areas by Sammartino et al. (2015), and reflects
the constant contribution of this group to primary production,
as previously reported (Vidussi et al., 2000, 2001; Uitz et al.,
2012).

Prochlorococcus abundance in the four regions was higher
over the late summer months and similar in terms of percentage
between the Western and Eastern basins. This phytoplankton
group is, however, less represented in the Northern Adriatic Sea.
It is worthy to note that an additional winter peak (February)
of Prochlorochoccus can be identified in the Levantine basin.
This pattern of abundance at a sub-regional scale coincides
with the wavelet analyses (Figure 11). The annual cycle of
Synechococcus is also evidenced by the maximum of abundance
in the four sub-regions during the summer months coinciding
with the stratification period and when Chla concentration in
the basin is low (Volpe et al., 2007). During this season, the
temporal climatology of Synechococcus reached values close to
100% in the Levantine basin, in agreement with the values
given by Sammartino et al. (2015) for picoplankton. These
authors indicated that this size class (closely corresponding
to Synechococcus) seems to cover homogenously the entire
Mediterranean Sea, with percentages of abundance close to

70%, although a decreasing concentration gradient from west
to east can be still observed, which was also revealed by
our analysis particularly for Prochlorococcus. According to our
analysis (Figure 10), Synechococcus dominated in the Eastern
basin, where ultraoligotrophic conditions are present and
particularly during summer (Siokou-Frangou et al., 2010).
During this season, primary production by the picoplankton
exhibits a maximum (Uitz et al., 2012. It is well known
that due to their high surface/volume ratio, Synechococcus
(and also Prochlorococcus) can cope optimally with nutrients-
impoverished environments (Le Quéré et al., 2005). The presence
of Synechococcus in the Levantine basin has been widely
reported (Uitz et al., 2012 and references therein), and the
PHYSAT-Med OC-CCI clearly revealed its presence in the
ultraoligotrophic Levantine basin and depicted a realistic annual
cycle (Figures 10, 11).

As expected, diatoms were the least abundant of the four
phytoplankton groups analyzed in the Mediterranean sub-
regions. In fact, with the exception of the Northern Adriatic Sea,
the percentage of abundance of diatoms fell within the range
of 10–20% in the Western sub-regions and in the Levantine
basin during the whole year. A moderate spring maximum
could be still detected, coinciding with the seasonal blooms
normally described for this phytoplankton group along the
Mediterranean (Marty and Chiavérini, 2002). As suggested
by the wavelet analyses, the annual cycle for diatoms is
rather less robust compared to other groups (Figure 11).
These findings agree with previous studies, where higher
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FIGURE 10 | Box plot for monthly climatology for each group in Mediterranean sub-regions. Each row represents each phytoplankton group (nanoeukaryotes,

Prochlorococcus, Synechococcus, and diatoms) and each column corresponds to the same sub-region (Alboran Sea, Ligurian Sea, Northern Adriatic Sea, and

Levantine Basin). In the box plot figure red lines stand for the median, blue box spans from the first to the second quartiles, and black lines represent 5th and 95th

percentiles, respectively, of monthly climatology for each group.

FIGURE 11 | Continuous wavelet power spectrum for the 10-day time series for each group and four sub-regions. Each row represents each phytoplankton group

(nanoeukaryotes, Prochlorococcus, Synechococcus, and diatoms) and each column corresponds to the same sub-region (Alboran Sea, Ligurian Sea, Northern

Adriatic Sea, and Levantine Basin). Red line indicates the region of time and frequency affected by the edges of the data and should not be considered.
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phytoplankton biomass, particularly diatoms, was found in the
Adriatic Sea (Socal et al., 1999; Casotti et al., 2003). This group
represented an important faction (14%) of phytoplankton only
in winter (Socal et al., 1999). Nevertheless, the contribution of
picoplankton typically exceeds that of microplankton most of
the year except during the winter-spring bloom (Uitz et al.,
2012).

According to our assessment using the new OC-CCI database,
the most abundant phytoplankton group during the winter
months in the Mediterranean Sea was the nanoeukaryotes, but
particularly in the sub-regions of the Western Mediterranean,
the Alboran and the Ligurian Seas. Regardless of a specific
area, the convective mixing in winter over the basin that uplifts
deep nutrients to the upper layer triggers the proliferation
of the bigger phytoplankton groups (Marty and Chiavérini,
2010), which is evidenced here by the major presence of
nanoeukaryotes in winter months (Figures 5, 10). Our data
also reproduce the basin-wide diatom peaks of abundance in
spring (Figure 9), following the Mediterranean phytoplankton
succession previously reported (Marty et al., 2002) and with
a consistent pattern every year (Figures 9–11). It should
be indicated, however, that our approach presents certain
limitations in diatoms detection, as acknowledged by Navarro
et al. (2014). Hence, it is likely that diatoms abundance
may have been slightly underestimated across the basin
although studies on extensive distribution of this group
along the Mediterranean are scarce to allow for an accurate
comparison. Conversely, Synechococcus and Prochlorococcus,
which are more favored by stratification conditions during
summer due to their better efficiency under nutrient depleted
conditions, were successfully identified both at the basin
(Figure 5) and sub-regional scales (Figure 10). Moreover, the
well-known dominance of Synechococcus with respect to
Prochlorococcus (Schauer et al., 2003), particularly in the
ultraoligotrophic Eastern basin, was neatly reproduced in our
study.

Overall, the spatio-temporal patterns obtained by applying
the PHYSAT-Med to the satellite OC-CCI database are
consistent with the previous distributions of the major
phytoplankton groups observed in the Mediterranean Sea
(Vidussi et al., 2000, 2001; Marty and Chiavérini, 2002,
2010; Marty et al., 2002; Siokou-Frangou et al., 2010;
Navarro et al., 2014; Sammartino et al., 2015; Di Cicco
et al., 2017). These results suggest that our approach is highly
suitable at basin scale and in selected sub-regions. This new
dataset for PFT could be an efficient tool for recording and
understanding the response of the marine ecosystem to
human pressures and thus for detecting eutrophication in the
Mediterranean Sea (Vantrepotte and Mélin, 2010; Colella et al.,
2016).

CONCLUSIONS

This work presents an updated version of the PHYSAT-
Med algorithm that has been specifically developed using
the OC-CCI database. This ESA initiative aims at gathering
ocean color measurements from four sensors since 1997.
The distribution of the major phytoplankton groups in the
Mediterranean basin during a 18 years period was consistent
with the previous knowledge on the distribution patterns
of phytoplankton in the basin. In addition, the modeled
distributions are in concordance with the distribution of
HPLC pigments analyzed in NW Mediterranean Sea for the
whole temporal range. The utility of the updated approach
was confirmed by the temporal analysis using the wavelet
spectrum, which allowed for the identification of shifting patterns
of periodicities across time for the dominant phytoplankton
groups. Therefore, the new version of the PHYSAT-Med is
appropriate for assessing the shifting spatio-temporal patterns of
the most abundant phytoplankton groups in the Mediterranean
Sea.
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